DOI QR코드

DOI QR Code

Evaluation on the Effects of Deicing Salts on Crop using Seedling Emergence Assay of Oilseed Rape (Brassica napus)

유채의 출아 검정을 통한 제설제의 작물 영향 평가

  • Lim, Soo-Hyun (Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Yu, Hyejin (Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University) ;
  • Lee, Chan-Young (Korea Expressway Corporation, Korea Expressway Corporation Research Institute) ;
  • Gong, Yu-Seok (Korea Expressway Corporation, Korea Expressway Corporation Research Institute) ;
  • Lee, Byung-Duk (Korea Expressway Corporation, Korea Expressway Corporation Research Institute) ;
  • Kim, Do-Soon (Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University)
  • 임수현 (서울대학교 농업생명과학대학 농업생명과학연구원) ;
  • 유혜진 (서울대학교 농업생명과학대학 농업생명과학연구원) ;
  • 이찬영 (한국도로공사 도로교통연구원) ;
  • 공유석 (한국도로공사 도로교통연구원) ;
  • 이병덕 (한국도로공사 도로교통연구원) ;
  • 김도순 (서울대학교 농업생명과학대학 농업생명과학연구원)
  • Received : 2020.11.25
  • Accepted : 2021.02.03
  • Published : 2021.03.01

Abstract

The increasing use of deicing salts has caused various environmental problems, including crop damage along the motorway where deicing salts are sprayed during winter. Deicing salts used on roads have been reported to negatively affect crops, but little information is known about their impact on crops. A seedling emergence assay was conducted to evaluate the effects of deicing salts on crops using oilseed rape (Brassica napus) as a model plant. We tested five chloride deicing salts consisting of NaCl, CaCl2, or MgCl2 and 1 non-chloride deicing salt (SM-3) at a range of concentrations (25, 50, 100, 200, and 400 mM), and untreated control. Regardless of deicing salts, they significantly delayed and reduced seedling emergence of oilseed rape with increasing salt concentration. Non-linear regression analysis of seedling emergence with a range of salt concentrations by fitting to the log-logistic model revealed that the chloride deicing salts reduced seedling emergence more than the non-chloride deicing salt SM-3. The GR50 value, the concentration causing 50% seedling emergence, of SM-3 was 47.1 mM, while those of the chloride deicing salts ranged from 30.7 mM (PC-10) to 37.5 mM (ES-1), showing approximately 10 mM difference between non-chloride and chloride deicing salts. Our findings suggest that seedling emergence assay is a useful tool to estimate the potential damage caused by deicing salts on crops.

겨울철 제설제 사용이 증가함에 따라 제설제가 사용된 고속도로변의 농작물에 대한 피해사례가 증가하고 있다. 국내 다양한 제설제가 제설목적으로 사용되고 있지만 작물에 미치는 영향에 대한 연구는 제한적이다. 따라서 본 연구는 국내에서 사용되는 6종의 제설제가 유채의 출아에 미치는 영향을 비교하여 작물에 미치는 제설제의 영향을 비교 평가하고자 수행되었다. NaCl, CaCl2 또는 MgCl2으로 구성된 5개의 염화물계 제설제와 1개의 비염화물계 제설제(SM-3)를 유채 파종 직후 6 처리농도(0. 25, 50, 100, 200, 400 mM)로 처리한 후 출아개체수를 조사하였다. 유채의 출아는 제설제 종류에 관계없이 제설제 농도가 증가함에 따라 현저히 감소하였는데 비염화물계 보다 염화물계 제설제 처리구에서 높은 출아억제가 확인되었다. 제설제 농도에 따른 출아율을 log-logistic 모델에 적용하여 비선형회귀 분석을 실시한 결과 50% 출아를 억제하는 농도인 GR50값이 비염화물계인 SM-3는 47.1 mM이고, 염화물계 제설제는 30.7 mM (PC-10)에서 37.5 mM (ES-1)로 비염화물계 제설제와 염화물계 제설제간 9.6 mM ~ 16.4 mM의 차이를 보였으나 염화물계 제설제간 차이는 크지 않음을 확인하였다. 본 연구의 결과는 유채의 출아 특성 평가가 작물에 대한 제설제의 잠재적 피해를 예측할 수 있는 유용한 평가방법임을 시사한다.

Keywords

References

  1. Ahn, C. S., S. O. Park, J. H. Noh, and S. H. Kim. 2019. Sentence 2016da233538, 233545 judgment. Supreme Court. 8p.
  2. Bybordi, A. 2010. The influence of salt stress on seed germination, growth and yield of canola cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 38(1) : 128-133.
  3. Farhoudi, R., F. Sharifzadeh, K. Poustini, M. T. Makkizadeh, and M. Kochak Por. 2007. The effects of NaCl priming on salt tolerance in canola (Brassica napus) seedlings grown under saline conditions. Seed Science and Technology 35(3) : 754-759. https://doi.org/10.15258/sst.2007.35.3.23
  4. Gibbs, J. N. and D. A. Burdekin. 1983. De-icing salt and crown damage to London plane. Arboricultural Journal 7(3) : 227-237. https://doi.org/10.1080/03071375.1983.9746623
  5. Gompertz, B. 1825. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. In a letter to Francis Baily, Esq. FRS &c. Philosophical transactions of the Royal Society of London (115) : 513-583.
  6. Hosseini, H. and M. P. Rezvani. 2006. Effect of water and salinity stress in seed germination on Isabgol (Plantago ovata). Iranian Journal of Field Crops Research 4(1) : 15-22.
  7. Kim, D. S., Y. W. Kwon, and B. W. Lee. 2006. Mathematical description of seedling emergence of rice and Echinochloa species as influenced by soil burial depth. Korean Journal of Crop Science 51(4) : 362-368.
  8. Kim, S. I. and D. W. Lee. 2014. Effect of chloride-deicers on growth of wheat, barley and spinach. Korean Journal of Environmental Agriculture 33(4) : 350-357. https://doi.org/10.5338/KJEA.2014.33.4.350
  9. Lee, B. D., Y. S. Gong, and H. T. Kim. 2015 a. Performance evaluation for environment certificated deicers and revision of quality specification for deicers. Korea Expressway Corporation Research Institute 127p.
  10. Lee, C. Y., B. D. Lee, and H. S. Kim. 2018. A study on evaluation method for impact by snow and ice control chemicals. Korea Expressway Corporation Research Institute 166p.
  11. Lee, J. W., J. O. Kim, J. T. Jung, and S. S. Shin. 2008. Production and effect of vegetation on eco-friendly organic acid deicer. Journal of the Korean Geo-Environmental Society pp. 321-326.
  12. Lee, D. W. 2015. Effect of EFD-1 and PC-10 deicers on growth of wheat, barley and spinach. Korean Journal of Environmental Agriculture 34(1) : 30-37. https://doi.org/10.5338/KJEA.2015.34.1.07
  13. Lee D. W., Y. G. Cho, J. N. Kim, W. H. Cha, Y. J. Hwang, S. Y. Lim, M. J. Han, and C. R. Jung. 2015b. Study on the effects of soil and crop plants by de-icers. Rural Development Administration 131p.
  14. Meneses, C. H. S. G., R. D. L. A. Bruno, P. D. Fernandes, W. E. Pereira, L. H. G. D. M. Lima, M. M. D. A. Lima, and M. S. Vidal. 2011. Germination of cotton cultivar seeds under water stress induced by polyethyleneglycol-6000. Scientia Agricola 68(2) : 131-138. https://doi.org/10.1590/S0103-90162011000200001
  15. Mohammadi, G. R. 2009. The influence of NaCl priming on seed germination and seedling growth of canola (Brassica napus L.) under salinity conditions. American-Eurasian Journal of Agricultural and Environmental Science 5(5) : 696-700.
  16. Lee, P. J. 2019. Environmental Dispute Mediation Case Book (Whole). National environmental dispute resolution commission. pp. 1991-2000.
  17. Rauf, M., M. Munir, M. ul Hassan, M. Ahmad, and M. Afzal. 2007. Performance of wheat genotypes under osmotic stress at germination and early seedling growth stage. African Journal of Biotechnology 6(8) : 971-975.
  18. Shin, S. S., S. D. Park, H. S. Kim, and K. S. Lee. 2010. Effects of calcium chloride and eco-friendly deicer on the plant growth. Journal of Korean Society of Environmental Engineers 32(5) : 487-498.
  19. Simini, M. and I. A. Leone. 1986. The response of dormant Norway and sugar maples to simulated de-icing salt spray. Journal of Arboriculture 12(1) : 1-5.
  20. Steribig J. C. 1980. Models for curve-fitting herbicide dose response data. Acta Agriculturae Scandinavica 30(1) : 59-64. https://doi.org/10.1080/00015128009435696
  21. Tester, M. and R. Davenport. 2003. Na+ tolerance and Na+ transport in higher plants. Annals of Botany 91(5) : 503-527. https://doi.org/10.1093/aob/mcg058
  22. Yook, M. J., J. S. Lim, J. H. Chung, and D. S. Kim. 2019. Miscanthus seed germination enhanced by gibberellin treatment. Weed and Turfgrass Science 8(4) : 299-307.