DOI QR코드

DOI QR Code

QTL Analysis of Germination Rate and Germination Coefficient of Velocity under Low Temperature in Rice

저온에서 벼의 발아율 및 발아속도 관련 양적형질 유전자좌(QTL) 분석

  • Kim, Jinhee (Crop Breeding Division, National Institute of Crop Science, Rural Development Administration) ;
  • Mo, Youngjun (Crop Breeding Division, National Institute of Crop Science, Rural Development Administration) ;
  • Ha, Su-Kyung (Crop Breeding Division, National Institute of Crop Science, Rural Development Administration) ;
  • Jeung, Ji-Ung (Crop Breeding Division, National Institute of Crop Science, Rural Development Administration) ;
  • Jeong, Jong-Min (Crop Breeding Division, National Institute of Crop Science, Rural Development Administration)
  • 김진희 (농촌진흥청 국립식량과학원 작물육종과) ;
  • 모영준 (농촌진흥청 국립식량과학원 작물육종과) ;
  • 하수경 (농촌진흥청 국립식량과학원 작물육종과) ;
  • 정지웅 (농촌진흥청 국립식량과학원 작물육종과) ;
  • 정종민 (농촌진흥청 국립식량과학원 작물육종과)
  • Received : 2020.10.23
  • Accepted : 2020.12.24
  • Published : 2021.03.01

Abstract

As rice originates from tropical regions, low temperature stress during the germination stage in temperate regions leads to serious problems inhibiting germination and seedling establishment. Identifying and characterizing quantitative trait loci (QTLs) for low-temperature germination (LTG) resistance help accelerate the development of rice cultivars with LTG tolerance. In this study, we identified QTLs for LTG tolerance (qLTG5, qLTG9) and germination coefficient of velocity under optimal conditions (OGCV) (qOGCV7, qOGCV9) using 129 recombinant inbred lines (RILs) derived from the cross between a low-temperature sensitive line Milyang23 and a low-temperature tolerant variety Gihobyeo. qLTG9 and qOGCV9 were detected at the same location on chromosome 9. At both LTG QTLs (qLTG5 and qLTG9), the alleles for LTG tolerance were contributed by the japonica variety Gihobyeo. At qOGCV7 and qOGCV9, the alleles for low temperature tolerance were derived from Milyang23 and Gihobyeo, respectively. The RILs with desirable alleles at two or more QTLs, i.e., GroupVII: qLTG5+qLTG9 (qOGCV9) and GroupVIII: qLTG5+qOGCV7+qLTG9 (qOGCV9), showed stable tolerance under low-temperature stress. Our results are expected to contribute to the improvement of tolerance to low-temperature and anaerobic stress in japonica rice, which would lead to the wide adoption of direct-seeding practices.

자포니카 벼의 저온 스트레스 내성 증진을 위하여, RIL 계통을 이용하여 저온 스트레스 내성 QTL을 탐색하였다. 이를 통하여 (1) 5, 9번 염색체에서 저온발아에 관련한 '기호벼' 유래 QTL, qLTG5와 qLTG9를 확인하였으며, 7, 9번 염색체에서 저온 발아속도에 관련한 '밀양23호' 및 '기호벼' 유래 QTL, qOGCV7, qOGCV9를 확인하였다. (2) Duncan 검정결과, 그룹VII [qLTG5+qLTG9 (qOGCV9)], 그룹VIII [qLTG5+qOGCV7+qLTG9 (qOGCV9)]의 계통들이 저온 스트레스에 내성이 있는 것으로 확인 되었다. (3) 최근 발표된 RIL 집단 담수내성 계통과 비교한 결과, 저온 스트레스에도 내성이 있으면서 담수발아에도 내성이 있는 것으로 확인된 총 2개의 유망 유전자원을 선발하였다. 본 연구의 결과를 통해 저온 및 혐기 관련 QTL의 집적은 벼의 저온에서의 발아 및 초기 입모율을 높여 저온스트레스 내성 개선에 도움이 되는 것으로 판단 되었으며, 선발된 유망 계통은 향후 직파재배 품종 육성에 유용한 유전자원으로 활용되어 직파재배의 안정성 증대에 기여할 것으로 기대된다.

Keywords

References

  1. Alhamdam, A. M., A. A. Alsadon, S. O. Khadil, M. A. Wahb-Allah, M. El Nagar, and A. A. Ibrahim. 2011. Influence of Storage Conditions on Seed Quality and Longevity of Four Vegetable Crops. Am. J. Agric. Environ. Sci. 11 : 353-359.
  2. Andaya, V. C. and D. J. Mackill. 2003. Mapping of QTLs associated with cold tolerance during the vegetative stage in rice. J. Exp. Bot. 54 : 2579-2585. https://doi.org/10.1093/jxb/erg243
  3. Causse, M. A., T. M. Fulton, Y. G. Cho, S. N. Ahn, J. Chunwongse, K. Wu, J. Xiao, X. Yu, P. C. Ronald, and S. E. Harrington. 1994. Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics 138 : 1251-1274. https://doi.org/10.1093/genetics/138.4.1251
  4. Cho, Y. G., M. R. Kang, Y. W. Kim, M. Y. Eun, T. Y. Chung, and Y. T. Lee. 1998. Development of RFLP framework map of rice (Oryza sativa L.) using recombinant inbred population derived from Milyang23/Gihobyeo cross. Korean Journal of Breeding 30 : 289-297.
  5. Churchill, G. A. and R. W. Doerge. 1994. Empirical threshold values for quantitative trait mapping. Genetics 138 : 963-971. https://doi.org/10.1093/genetics/138.3.963
  6. Fujino, K., H. Sekiguchi, T. Sato, H. Kiuchi, Y. Nonoue, Y. Takeuchi, T. Ando, S. Y. Lin, and M. Yano. 2004. Mapping of quantitative trait loci controlling low-temperature germinability in rice (Oryza sativa L.). Theor. Appl. Genet. 108 : 794-799. https://doi.org/10.1007/s00122-003-1509-4
  7. Fujino, K., H. Sekiguchi, Y. Matsuda, K. Sugimoto, K. Ono, and M. Yano. 2008. Molecular identification of a major quantitative trait locus, qLTG3-1, controlling low-temperature germinability in rice. Proc. Natl. Acad. Sci. U. S. A. 105 : 12623-12628. https://doi.org/10.1073/pnas.0805303105
  8. Han, L. Z., Y. Y. Zhang, Y. L. Qiao, G. L. Cao, S. Y. Zhag, J. H. Kim, and H. J. Koh. 2006. Genetic and QTL Analysis for Low-Temperature Vigor of Germination in Rice. Acta Genet. Sin. 33 : 998-1006. https://doi.org/10.1016/S0379-4172(06)60135-2
  9. Hou, M. Y., C. M. Wang, L. Jiang, J. M. Wan, H. Yasui, and A. Yoshimura. 2004. Inheritance and QTL mapping of low temperature germinability in rice (Oryza sativa L.). Acta Genet Sin. 31 : 701-706.
  10. Jeong, J. M., J. H. Kim, Y. J. Mo, S. K. Ha, W. J. Kim, B. K. Kim, and J. U. Jeung. 2019. Effect of Oxygen and Temperature Levels on the Seedling Characteristics of Korean and Anaerobic Germination-tolerant Rice under Flooding Conditions. Korean J. Crop Sci. 64 : 287-298.
  11. Ji, H. S., H. B. Kim, G. S. Lee, U. H. Yoon, T. H. Kim, Y. J. Seol, D. W. Yun, H. J. Koh, and M. Y. Eun. 2012. Molecular Genetic and Physical Map Using PCR-based DNA Markers with the Recombinant Inbred Population Derived from Milyang23 / Gihobyeo Cross. Kor. J. Breeed. Sci 44 : 273-281.
  12. Jiang, L., H. MingYu, W. ChunMing, and W. JianMin. 2004. Quantitative trait loci and epistatic analysis of seed anoxia germinability in rice (Oryza sativa). Rice Sci. 11 : 238-244.
  13. Jiang, L., S. Liu, M. Hou, J. Tang, L. Chen, H. Zhai, and J. Wan. 2006. Analysis of QTLs for seed low temperature germinability and anoxia germinability in rice (Oryza sativa L.). F. Crop. Res. 98 : 68-75. https://doi.org/10.1016/j.fcr.2005.12.015
  14. Jiang, N., S. Shi, H. Shi, H. Khanzada, G. M. Wassan, C. Zhu, X. Peng, Q. Yu, X. Chen, X. He, J. Fu, L. Hu, J. Xu, L. Ouyang, X. Sun, D. Zhou, H. He, and J. Bian. 2017. Mapping qtl for seed germinability under low temperature using a new high-density genetic map of rice. Front. Plant Sci. 8 : 1-9.
  15. Jiang, S., C. Yang, Q. Xu, L. Wang, X. Yang, X. Song, J. Wang, X. Zhang, B. Li, H. Li, Z. Li, and W. Li. 2020. Genetic dissection of germinability under low temperature by building a resequencing linkage map in japonica rice. Int. J. Mol. Sci. 21 : 1284. https://doi.org/10.3390/ijms21041284
  16. Kim, J. H., Y. J. Mo, S.-K. Ha, W.-J. Kim, B.-K. Kim, J.-U. Jeung, and J.-M. Jeong. 2019. QTL Analysis for Tolerance to Anaerobic Germination in Japonica Rice (Oryza sativa L.). Korean J. Breed. Sci. 51 : 415-423. https://doi.org/10.9787/KJBS.2019.51.4.415
  17. Ko, J. C., M. K. Back, W. J. Kim, J. Y. Shon, K. Y. Ha, H. -J. Kang, M. S. Shin, and J. K. Ko. 2011. Analysis of Low Temperature Germination Ratio in Rice Cultivars for Breeding of Direct Seeding Variety. Korean J. Intl. Agri. 23 : 89-94.
  18. Li, L., X. Liu, K. Xie, Y. Wang, F. Liu, Q. Lin, W. Wang, C. Yang, B. Lu, S. Liu, L. Chen, L. Jiang, and J. Wan. 2013. qLTG-9, a stable quantitative trait locus for low-temperature germination in rice (Oryza sativa L.). Theor. Appl. Genet. 126 : 2313-2322. https://doi.org/10.1007/s00122-013-2137-2
  19. Lin, J., W. Y. Zhu, Y. D. Zhang, Z. Zhu, L. Zhao, T. Chen, Q. Y. Zhao, L. H. Zhou, X. W. Fang, Y. P. Wang, and C. L. Wang. 2011. Detection of QTL for Cold Tolerance at Bud Bursting Stage Using Chromosome Segment Substitution Lines in Rice (Oryza sativa). Rice Sci. 18 : 71-74. https://doi.org/10.1016/S1672-6308(11)60010-3
  20. Lincoln, S. E., M. J. Daly, and E. S. Lander. 1993. Constructing Genetic Linkage Maps with MAPMAKER/EXP Version 3.0: A Tutorial and Reference Manual. 49 p.
  21. Lou, Q., L. Chen, Z. Sun, Y. Xing, J. Li, X. Xu, H. Mei, and L. Luo. 2007. A major QTL associated with cold tolerance at seedling stage in rice (Oryza sativa L.). Euphytica 158 : 87-94. https://doi.org/10.1007/s10681-007-9431-5
  22. Miura, K., S. Y. Lin, M. Yano, and T. Nagamine. 2001. Mapping quantitative trait loci controlling low temperature germinability in rice (Oryza sativa L.). Breeding Sci. 51 : 293-299. https://doi.org/10.1270/jsbbs.51.293
  23. Najeeb, S., J. Ali, A. Mahender, Y. L. Pang, J. Zilhas, V. Murugaiyan, L. R. Vemireddy, and Z. Li. 2020. Identification of main-effect quantitative trait loci (QTLs) for low-temperature stress tolerance germination- and early seedling vigor-related traits in rice (Oryza sativa L.). Mol. Breed. 40 : 10. https://doi.org/10.1007/s11032-019-1090-4
  24. Pradhan, B. K. and H. K. Badola. 2012. Effect of storage conditions and storage periods on seed germination in eleven populations of Swertia chirayita: A critically endangered medicinal herb in Himalaya. Sci. World J. 2012 : 1-9. https://doi.org/10.1100/2012/128105
  25. Redona, E. D. and D. J. Mackill. 1996. Mapping quantitative trait loci for seedling vigor in rice using RFLPs. Theor. Appl. Genet. 92 : 395-402. https://doi.org/10.1007/bf00223685
  26. Shakiba, E., J. D. Edwards, F. Jodari, S. E. Duke, A. M. Baldo, P. Korniliev, S. R. McCouch, and G. C. Eizenga. 2017. Genetic architecture of cold tolerance in rice (Oryza sativa) determined through high resolution genome-wide analysis. PLoS One 12 : 1-22.
  27. Shon, J. Y., J. W. Kim, H. Y. Jung, B. K. Kim, and K. J. Choi. 2014. Percentge and speed of seed germination as affected by germinating temperature and storage duration in recently developed Korean Rice Cultivars. Korean J. Int. Agric. 26 : 440-446. https://doi.org/10.12719/KSIA.2014.26.4.440
  28. Suh, J. P., J. U. Jeung, J. I. Lee, Y. H. Choi, J. D. Yea, P. S. Virk, D. J. Mackill, and K. K. Jena. 2010. Identification and analysis of QTLs controlling cold tolerance at the reproductive stage and validation of effective QTLs in cold-tolerant genotypes of rice (Oryza sativa L.). Theor. Appl. Genet. 120 : 985-995. https://doi.org/10.1007/s00122-009-1226-8
  29. Teng, S., D. Zeng, Q. Qian, K. Yasufumi, D. Huang, and Z. Lihuang. 2001. QTL analysis of rice low temperature germinability. Chinese Sci. Bull. 46 : 1800-1804. https://doi.org/10.1007/bf02900554
  30. Thomas, B. R and R. L. Rodriguez. 1994. Metabolite signals regulate gene expression and source/sink relations in cereal seedlings. Plant Physiology 106 : 1235. https://doi.org/10.1104/pp.106.4.1235
  31. Wade, M. J., R. G. Winther, A. F. Agrawal, and C. J. Goodnight. 2001. Alternative definitions of epistasis: Dependence and interaction. Trends Ecol. Evol. 16 : 498-504. https://doi.org/10.1016/S0169-5347(01)02213-3
  32. Wang, W., S. Peng, Q. Chen, J. Mei, H. Dong, and L. Nie. 2016. Effects of pre-sowing seed treatments on establishment of dry direct-seeded early rice under chilling stress. AoB Plants 8.
  33. Wang, X., B. Zou, Q. Shao, Y. Cui, S. Lu, Y. Zhang, Q. Huang, J. Huang, and J. Hua. 2018. Natural variation reveals that OsSAP16 controls low-Temperature germination in rice. J. Exp. Bot. 69 : 413-421. https://doi.org/10.1093/jxb/erx413
  34. Wright, M. H., C. W. Tung, K. Zhao, A. Reynolds, S. R. McCouch, and C. D. Bustamante. 2010. ALCHEMY: A reliable method for automated SNP genotype calling for small batch sizes and highly homozygous populations. Bioinformatics 26 : 2952-2960. https://doi.org/10.1093/bioinformatics/btq533
  35. Ye, C., S. Fukai, I. Godwin, R. Reinke, P. Snell, J. Schiller, and J. Basnayake. 2009. Cold tolerance in rice varieties at different growth stages. Crop Pasture Science 60 : 328-338. https://doi.org/10.1071/CP09006
  36. Zhang, L., H. Li, Z. Li, and J. Wang. 2008. Interactions between markers can be caused by the dominance effect of quantitative trait loci. Genetics 180 : 1177-1190. https://doi.org/10.1534/genetics.108.092122
  37. Zhao, J., S. Zhang, J. Dong, T. Yang, X. Mao, Q. Liu, X. Wang, and B. Liu. 2017. A novel functional gene associated with cold tolerance at the seedling stage in rice. Plant Biotechnol. J. 15 : 1141-1148. https://doi.org/10.1111/pbi.12704