DOI QR코드

DOI QR Code

설악산 국립공원 지역 토석류 발생가능성 평가 기법의 개발

Development of a Prediction Technique for Debris Flow Susceptibility in the Seoraksan National Park, Korea

  • 이성재 (서울대학교 학술림) ;
  • 김길원 (경상대학교 농업생명과학연구원) ;
  • 정원옥 (국립공원관리공단 국립공원연구원) ;
  • 강원석 (국립산림과학원 산림보전연구부) ;
  • 이은재 (국립산림과학원 산림기술경영연구소)
  • Lee, Sung-Jae (University Forests of Seoul National University) ;
  • Kim, Gil Won (Institute of Agriculture Life Science, Gyeongsang National University) ;
  • Jeong, Won-Ok (Korea National Park Research Institute, Korea National Park Service) ;
  • Kang, Won-Seok (Department of Forest Conservation, National Institute of Forest Science) ;
  • Lee, Eun-Jai (Technology and Management Research Center, National Institute of Forest Science)
  • 투고 : 2020.05.18
  • 심사 : 2021.01.15
  • 발행 : 2021.03.31

초록

최근의 기후변화는 산지토사재해의 발생을 가속시키고 있다. 산지토사재해 중 토석류는 전파길이가 길고 매우 빠른 거동 특성을 갖기 때문에 매우 위협적으로 인식된다. 본 연구는 설악산 국립공원내 토석류 발생지 263개소를 대상으로 발생 길이(m)에 미치는 영향인자를 구명하고, 수량화이론(I)을 사용하여 발생 길이에 대한 각 산림환경 인자의 기여도 분석을 하여 예방적인 측면에서 국립공원내 토석류 발생 가능성지역에 대한 예측기법을 개발하였다. 각 산림환경 인자의 Range를 추정한 결과, 종단사면(0.9676)이 가장 높게 나타나 설악산 국립공원의 토석류 발생 가능성에 큰 영향을 미치는 것으로 추정되었으며, 다음으로는 횡단사면(0.6876), 고도(0.2356), 사면경사(0.1590), 방위(0.1364) 순으로 나타났다. 설악산 국립공원 산악지 토석류 발생 발생가능성 판정표를 기준으로 5개의 산림환경 인자의 category별 점수를 계산한 추정치 범위는 0점에서 2.1864점 사이에 분포하고 있으며, 중앙값은 1.0932점으로 토석류 발생가능성을 예측을 작성한 결과 I등급은 1.6399 이상, II등급 1.0932~1.6398, III등급 0.5466~1.0931, IV등급 0.5465 이하로 나타나 1등급, 2등급에서 토석류 발생 비율이 86.3%로서 높은 적중률을 보였다.

Recently, climate change has gradually accelerated the occurrence of landslides. Among the various effects caused by landslides,debris flow is recognized as particularly threatening because of its high speed and propagating distance. In this study, the impacts of various factors were analyzed using quantification theory(I) for the prediction of debris flow hazard soil volume in Seoraksan National Park, Korea. According to the range using the stepwise regression analysis, the order of impact factors was as follows: vertical slope (0.9676), cross slope (0.6876), altitude (0.2356), slope gradient (0.1590), and aspect (0.1364). The extent of the normalized score using the five-factor categories was 0 to 2.1864, with the median score being 1.0932. The prediction criteria for debris flow occurrence based on the normalized score were divided into four grades: class I, >1.6399; class II, 1.0932-1.6398; class III, 0.5466-1.0931; and class IV, <0.5465. Predictions of debris flow occurrence appeared to be relatively accurate (86.3%) for classes I and II. Therefore, the prediction criteria for debris flow will be useful for judging the dangerousness of slopes.

키워드

참고문헌

  1. Brand, E.W. 1988. Landslide risk assessment in gong kong, on Landslided. Lausanne 2: 1059-1074.
  2. Chau, K.T., Sze, Y.L., Fung, M.K., Wong, W.Y., Fong, E.L. and Chan, L.C.O. 2004. Landslide hazard analysis for hongkong using landslide inventory and GIS. Computers and Geosciences 30(4): 429-443. https://doi.org/10.1016/j.cageo.2003.08.013
  3. Choi, K. 1986. Landslides occurrence and its prediction in Korea. Doctor Philosophy Dissertation kangwon National University korea. pp. 45.
  4. Choi, Y.N., Lee, H.H. and Yoo, N.J. 2018. Characteristic analysis and prediction of debris flow-prone area at daeryongsan. Journal of the Korean Association of Geographic Information Studies 21(3): 48-62. https://doi.org/10.11108/KAGIS.2018.21.3.048
  5. Dai, F.C. and Lee, C.F. 2002. Landslide characteristics and slope in instability modeling using GIS. Lantau Island, Hongkong, Geomorphology 42(2): 213-228.
  6. EPOCH (European Community Program). 1993. Temporal occurrence and forecasting of landslides in the european community, Contract No. 900025.
  7. Hutchinson, J.N. 1988. Mophological and geotechnical parameters of landslides in relation to geology and hydrology. In Landslides Proc. 5th Int. Symp. on Landslides. Balkema, Rotterdam, pp. 3-35.
  8. Jung, K.W., Park, S.J. and Lee, C.W. 2008. Development of the score table for prediction of landslide hazard (A case study of gyeongsangbuk-do province). Journal of Korean Forestry Society 93(7): 332-339.
  9. Kang, W.P., Hiroshi, M. Hiroshi, O. and Ma, H.S. 1986. On the determination of slope stability to landslide by quantification(II). Journal Korean Forestry Society 75: 32-37.
  10. Kim, G.H. and Hwang, J.S. 2011. The estimation of debris flow behaviors in injae landslide area. Korean Journal of Geomatics 29(5): 535-541. https://doi.org/10.7848/ksgpc.2011.29.5.535
  11. Kim, K.N., Jang, S.J., Lee, K.Y., Seo, G.B., Kim, B.S. and Chun, K.W. 2015. Prediction of the debris flow-prone area in the hilly district within urban. Journal of the Korean Society of Hazard Mitigation 15(3): 141-146. https://doi.org/10.9798/KOSHAM.2015.15.3.141
  12. Kim, K.S., Kim, W.Y., Chae, B.G., Song, Y.S. and Cho, Y.C. 2005. Engineering geological analysis of landslides on natural slopes induced by rainfall. The Journal of Engineering Geology 15(2): 105-212.
  13. Kim, P.G. and Han, K.Y. 2017. Numerical modeling for the detection of debris flow using detailed soil map and GIS. Korean Society of Civil Engineers 37(1): 43-59. https://doi.org/10.12652/Ksce.2017.37.1.0043
  14. Kwon, H.J. 2016. A Study on the characteristics of influential factors and hazard prediction map development of the landslides in mountainous national parks by using spatial information technologies. Doctor of Philosophy Dissertation Kyungpook National University korea. pp. 2.
  15. Lee, G.S., Lee, H.J., Go, S.Y. and Cho, G.S. 2014. The evaluation on the prediction ratio of landslide hazard area based on geospatial information. Journal of Cadastre 44(2): 113-124.
  16. Lee, J.S., Song, C.G., Kim, H.T. and Lee, S.O. 2015. Risk analysis considering the topography characteristics of debris flow occurrence area. Korean Society of Hazard Mitigation 15(3): 75-82. https://doi.org/10.9798/KOSHAM.2015.15.3.75
  17. Lee, S.J. 2014. Development of prediction technique of landslide using forest environmental factors. Doctor of Philosophy Dissertation Gyeongsang National University korea. pp. 1-6.
  18. Lee, S.J. and Ma, H.S. 2018. Development of prediction technique of landslide using forest environmental factors. Journal of Agriculture & Life Sciences 52(4): 63-72.
  19. Lee, S.J., Lee, E.J. and Ma, H.S. 2019. Analysis of characteristics landslide susceptibility in rugged mountain range in the korean national park. Journal of Korean Forestry Society 108(4): 551-560.
  20. Ma, H.S. 1994. Studies on development of prediction model of landslide hazard and its utilization. Journal of Korean Forestry Society 83(2): 175-190.
  21. Ma, H.S. 2001. Landslide Characteristics and recovery direction in korean national parks. Journal of National Park Research 27: 17-21.
  22. Ma, H.S. and Jeong, W.O. 2010. Characteristics analysis of debris flow disaster in korean national parks. The Korea Society For Environmental Restoration And Revegetation Technology 13(4): 52-64.
  23. Ma, H.S., Kang, W.S. and Lee, S.J. 2014. Prediction and evaluation of landslide hazard based on regional forest environment. Journal of Korean Forestry Society 103(2): 233-239. https://doi.org/10.14578/jkfs.2014.103.2.233
  24. Ma, H.S., Kang, W.S. and Lee, S.J. 2015. Prediction of debris flow hazard in high mountain areas. Journal of Agriculture & Life Sciences 49(5): 13-21. https://doi.org/10.14397/jals.2015.49.5.13
  25. Varnes, D.J. 1978. Slope movement types and processes, In landslides analysis and Control, TRB special Report, 176, National Academy of Science 11-33.