DOI QR코드

DOI QR Code

Optimizing In Vitro Propagation of Sophora koreensis Nakai using Statistical Analysis

다양한 통계분석 기법을 이용한 개느삼(Sophora koreensis Nakai)의 기내 증식 최적 조건 구명

  • Jeong, Ukhan (Department of Forest Environment System, Kangwon National University) ;
  • Lee, Hwa (Department of Forest Environment System, Kangwon National University) ;
  • Park, Sanghee (Department of Forest Environment System, Kangwon National University) ;
  • Cheong, Eun Ju (Department of Forest Environment System, Kangwon National University)
  • 정욱한 (강원대학교 산림환경시스템학과) ;
  • 이화 (강원대학교 산림환경시스템학과) ;
  • 박상희 (강원대학교 산림환경시스템학과) ;
  • 정은주 (강원대학교 산림환경시스템학과)
  • Received : 2021.01.06
  • Accepted : 2021.02.15
  • Published : 2021.03.31

Abstract

Sophora koreensis Nakai is an indigenous plant in Koreawith a restricted natural range, part of which is in Gangwon province. The species is known to contain phytochemicals that have beneficial effects on human health, and it is economically important in bioindustry. Because of the limited number of plants in a small range of habitats, the mass-propagation method should be developed for use and conservation. In vitro tissue culture is a reliable method in terms of mass propagation from selected clones of the species. We investigated the optimal conditions of the medium in this process, especially focusing on the concentrations of plant growth regulators(PGRs) in the culture of stem-containing axillary buds. Three statistical methods, i.e., ANOVA, response surface method(RSM), and fuzzy clustering were used to analyze the plant growth, number of shoots induced, and shoot length with various combinations of PGRs. Results from the RSM differed from those of the other two methods; thus, the method was not suitable. ANOVA and fuzzy clustering showed similar results. However, more accurate results were obtained using fuzzy clustering because it provided a probability for each treatment. On the basis of the fuzzy clustering analysis, stem tissue produced the greatest number of shoots(11.03 per explant; 63.33%) on a medium supplemented with 5-��M 6-benzylaminopurine and 2.5-��M thidiazuron(TDZ). Proliferation of shoots(2.18 ± 0.21 cm, 63.33%) was attained on a medium supplemented with 2.5-��M BA, 2.5-��M TDZ, and 2.5-��M gibberellic acid.

개느삼(Sophora koreensis Nakai)은 우리나라 고유종으로 강원도 일부 지역에 자생하는 식물로 유용 기능성 성분이 포함되어 경제성이 높은 생물자원 식물로 평가된다. 따라서 자원 확보를 위한 대량증식이 필요하다. 조직배양을 이용한 번식은 빠르게 대량증식이 가능하다는 점에서 유용하여 개느삼을 영양체를 이용하여 조직배양을 통해 증식법을 개발하고자 하였다. 줄기 생산에 효과적인 호르몬의 종류와 농도에 대한 실험을 수행하고 다양한 통계분석법으로 분석하여 줄기생산에 가장 효과적인 생장조절물질의 적정조건을 구명하고자 하였다. 본 연구에서는 기내 식물체 개느삼을 세 가지 생장조절물질을 혼합 처리 후 5주간 배양하여 얻은 생장결과를 분산분석(ANOVA)과 반응표면분석(Response Surface Method, RSM), 퍼지 군집(Fuzzy Clustering)분석을 수행하였다. 그 결과 반응표면분석은 ANOVA 분석과 퍼지 군집 분석 결과와 상이하고 실제 생장결과에 부합하지 않아 적정조건 구명을 위한 통계분석법으로 적용하기에 적절하지 않은 것으로 나타났다. 반면 ANOVA 분석과 퍼지 군집 분석은 상위 다섯 가지 처리구에 대해서 줄기생산과 줄기길이 생장에 효과적인 것으로 나타나는 유사한 결과를 보여주었다. 다만 퍼지 군집 분석은 각 처리와 결과값의 예측 확률을 제시해주어 ANOVA 분석에서 나타내는 단순 평균값 비교로 농도의 범위를 나타내어 정확한 조합 선택이 어려운 점을 보완할 수 있었다. 퍼지 군집 분석법 결과에 따르면 개느삼 줄기조직은 5 ��M 6-Benzylaminopurine(BA)와 2.5 ��M Thidiazuron(TDZ)이 혼합된 배지에서 가장 많은 줄기를(11.03±1.52개, 63.33%) 생산하였으며, 줄기길이 생장은 2.5 ��M BA, 2.5 ��M TDZ, 2.5 ��M Gibberellic acid(GA3) 조합된 배지에서 가장 긴 것으로(2.18 ± 0.21 cm, 63.33%) 나타나 개느삼 기내배양을 위한 최적 호르몬의 구성인 것으로 나타났다.

Keywords

References

  1. Ahmad, A., Ahmad, N., Anis, M., Alatar, A.A., Abdel-Salam, E.M., Qahtan, A.A. and Faisal, M. 2021. Gibberellic acid and thidiazuron promote micropropagation of an endangered woody tree (Pterocarpus marsupium Roxb.) using in vitro seedlings. Plant Cell, Tissue and Organ Culture 144(2): 449-462. https://doi.org/10.1007/s11240-020-01969-1
  2. Box, G.E.P. and Wilson, K.B. 1951. On the experimental attainment of optimum conditions. Journal of the Royal Statistical Society 13(1): 1-45. https://doi.org/10.1111/j.1467-9884.1963.tb01587.x
  3. Choi, O.J., Jung, H.N., Kim, Y.D., Shim, J.H., Kwak, S.H. and Shim, K.H. 2014. Optimization of the preparation of rice snack by response surface methodology. Korean Journal of Food Cook Science 30(4): 454-462. https://doi.org/10.9724/kfcs.2014.30.4.454
  4. Cheong, E.J. 2000. A study on mass propagation of Prunus yedoensis matsumura from Cheju using In Vitro culture techniques. Department of Forestry Graduate School, Kangwon National University.
  5. Ferraro, M.B., Giordani, P. and Serafini, A. 2019. fclust: An R package for fuzzy clustering. The R Journal 11(1): 198. R package version 2.1.1, URL http://CRAN.R-project.org/package=fclust.
  6. Jeong, H.C. 2010. Searching the optimal design points based on taguchi method and variance response surface method. Journal of the Korean Data Analysis Society 12(2): 1135-1148.
  7. Jung, H.Y. 2018. On the applications of fuzzy approaches in medical diagnosis and bioinformatics. Journal of the Korean Data and Information Science Society 29(6): 1445-1456. https://doi.org/10.7465/jkdi.2018.29.6.1445
  8. Kim, J.E. 2015. Genetic Polymorphism and in vitro Propagation in Echinosophora koreensis NAKAI. Department of Forest Environment System Graduate School, Kangwon National University.
  9. Lee, H. 2020. Micropropagation of Echinosophora koreensis through in vitro culture. Department of forest resources Graduate School, Kangwon National University.
  10. Lee, H.S., Yi, J.S. and An, C.H. 2014. Adventitious shoots induction and regeneration from the stem explants of Echinosophora koreensis Nakai. Journal of Agricultural, Life and Environmental Sciences 26(2): 36-41.
  11. Lee, W.T. 1982. The rare plant-resource of Kangwon-do. Kangwon Branch of the Korean Association for Conservation of Nature, Chuncheon (in Korea).
  12. Leite, V.M., Rosolem, C.A. and Rodrigues, J.D. 2003. Gibberellin and cytokinin effects on soybean growth. Scientia Agricola 60(3): 537-541. https://doi.org/10.1590/S0103-90162003000300019
  13. Lenth, R.V. 2009. Response-Surface methods in R, using rsm. Journal of Statistical Software 32(7): 1-17. R package version 2.10.2, URL http://CRAN.R-project.org/package=rsm. https://doi.org/10.18637/jss.v032.i07
  14. Moon, H.K. and Kim, Y.W. 2008. In vitro propagation of a rare and endangered species, Sophora koreensis Nakai, by axillary bud culture. Journal of Plant Biotechnology 35(3): 229-234. https://doi.org/10.5010/JPB.2008.35.3.229
  15. Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15(3): 473-479. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  16. Pai, S.R. and Desai, N.S. 2018. Effect of TDZ on various plant cultures. pp. 439-454. Ahmad, A. and Faisal, M. In Thidiazuron: From urea derivative to plant growth regulator. Springer, Singapore.
  17. Park, S.H. and Kim, J.U. 2018. Modern Design of Experiments using MINITAB Volume 3. Minyoungsa.
  18. Valio, I.F.M. and Schwabe, W.W. 1978. Correlative growth in seedling of Phaseolus vulgaris L.: Inhibition of stem growth by the primary leaves. Annals of Botany 42(2): 263-268. https://doi.org/10.1093/oxfordjournals.aob.a085456
  19. Yang, H.J., Park, C.S., Yang, H.Y., Jeong, S.J., Jeong, S.Y., Jeong, D.Y., Kang, D.O., Moon, J.Y. and Choi, N.S. 2015. Optimization of a medium for the production of cellulase by Bacillus subtilis NC1 using response surface methodology. Journal of Life Science 25(6): 680-685. https://doi.org/10.5352/JLS.2015.25.6.680
  20. Yoon, S.J., Shin, W.S., Chun, G.T. and Jeong, Y.S. 2007. Optimization of production medium by response surface method and development of fermentation condition for Monascus pilosus culture. Korean Journal of Biochemical Bioengineering 22(5): 288-296.