DOI QR코드

DOI QR Code

Phylogeography of Gloiopeltis furcata sensu lato (Gigartinales, Rhodophyta) provides the evidence of glacial refugia in Korea and Japan

  • Yang, Mi Yeon (Research Institute for Basic Sciences, Jeju National University) ;
  • Fujita, Daisuke (Tokyo University of Marine Science and Technology) ;
  • Kim, Myung Sook (Research Institute for Basic Sciences, Jeju National University)
  • Received : 2020.09.25
  • Accepted : 2021.03.03
  • Published : 2021.03.17

Abstract

The present-day genetic structure of macroalgal species reflects both geographical history and oceanic circulation patterns as well as anthropogenic introduction across native ranges. To precisely understand the genetic diversity and how the factors shape the current population structure of Gloiopeltis furcata sensu lato, we determined the mitochondrial 5' end of cytochrome c oxidase subunit I (COI-5P) sequences for 677 individuals sampled from 67 sites spanning almost the entire distribution range in Korea and Japan. Results from the phylogenetic analysis and haplotype distribution revealed eleven distinct lineages within G. furcata s.l. along the Korea-Japan coastal areas and displayed divergent phylogeographic patterns among lineages. Despite the closely related lineages distributed in same habitats as high rocky intertidal zone, they display different phylogeographic patterns among lineages. The populations from the south of Korea-Japan harbored the highest genetic diversity and unique endemism in comparison with other populations in the distribution range. This could be the evidence of southern refugia for G. furcata s.l. in the Northwest (NW) Pacific and the recent migration from native to introduced region. The reason is that an exceptional distribution pattern was found high genetic diversity in Hakodate of Japan where is the northern location in the NW Pacific. Our results imply the contemporary influence on the distribution due to current circulation pattern and anthropogenic effects. These phylogeographic findings provide the important insight into cryptic species diversity and the detailed distribution pattern of Gloiopeltis in the NW Pacific.

Keywords

References

  1. Andreakis, N., Costello, P., Zanolla, M., Saunders, G. W. & Mata, L. 2016. Endemic or introduced? Phylogeography of Asparagopsis (Florideophyceae) in Australia reveals multiple introductions and a new mitochondrial lineage. J. Phycol. 52:141-147. https://doi.org/10.1111/jpy.12373
  2. Boo, G. H., Qiu, Y. -X., Kim, J. Y., Ang, P. O. Jr., Bosch, S., De Clerck, O., He, P., Higa, A., Huang, B., Kogame, K., Liu, S.-L., van Nguyen, T., Suda, S., Terada, R., Miller, K. A. & Boo, S. M. 2019. Contrasting patterns of genetic structure and phylogeography in the marine agarophytes Gelidiophycus divaricatus and G. freshwateri (Gelidiales, Rhodophyta) from East Sea. J. Phycol. 55:1319-1334. https://doi.org/10.1111/jpy.12910
  3. Cecere, E., Moro, U., Wolf, M. A., Petrocelli, A., Verlaque, M. & Sfriso, A. 2011. The introduced seaweed Grateloupia turuturu (Rhodophyta, Halymeniales) in two Mediterranean trasitional water systems. Bot. Mar. 54:23-33. https://doi.org/10.1515/BOT.2011.009
  4. Cheang, C. C., Chu, K. H. & Ang, P. O. Jr. 2010. Phylogeography of the marine macroalga Sargassum hemiphyllum (Phaeophyceae, Heterokontophyta) in northwestern Pacific. Mol. Ecol. 19:2933-2948. https://doi.org/10.1111/j.1365-294X.2010.04685.x
  5. Chen, S., Wu, J., Chen, L. & Zhu, C. 2011. Effects of light and temperature on the attachment and development of Gloiopeltis tenax and Gloiopeltis furcata tetraspores. J. Appl. Phycol. 23:1045-1051. https://doi.org/10.1007/s10811-010-9638-z
  6. Diaz-Tapia, P., Maggs, C. A., Macaya, E. C. & Verbruggen, H. 2018. Widely distributed red algae often represent hidden introductions, complexes of cryptic species or species with strong phylogeographic structure. J. Phycol. 54:829-839. https://doi.org/10.1111/jpy.12778
  7. Excoffier, L., Laval, G. & Schneider, S. 2005. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol. Bioinform. Online 1:47-50.
  8. Fu, Y. X. 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915-925. https://doi.org/10.1093/genetics/147.2.915
  9. Geoffroy, A., Destombe, C., Kim, B., Mauger, S., Raffo, M. P., Kim, M. S. & Le Gall, L. 2016. Patterns of genetic diversity of the cryptogenic red alga Polysiphonia morrowii (Ceramiales, Rhodophyta) suggest multiple origins of the Atlantic populations. Ecol. Evol. 6:5635-5647. https://doi.org/10.1002/ece3.2135
  10. Guiry, M. D. & Guiry, G. M. 2020. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. Available from: http://www.algaebase.org. Accessed Aug 5, 2020.
  11. Hanyuda, T., Yamamura, K., Boo, G. H., Miller, K. A., Vinogradova, K. L. & Kawai, H. 2019. Identification of true Gloiopeltis furcata (Gigartinales, Rhodophyta) and preliminary analysis of its biogeography. Phycol. Res. 68:161-168. https://doi.org/10.1111/pre.12411
  12. Hanyuda, T., Yamamura, K. & Kawai, H. 2020. Molecular studies of Gloiopeltis (Endocladiaceae, Gigartinales), with recognition of G. compressus comb. nov. from Japan. Phycologia 59:1-5. https://doi.org/10.1080/00318884.2019.1663476
  13. Hewitt, G. M. 1996. Some genetic consequences of ice ages, and their role, in divergence and speciation. Biol. J. Linn. Soc. 58:247-276. https://doi.org/10.1006/bijl.1996.0035
  14. Hewitt, G. M. 2004. Genetic consequences of climatic oscillations in the Quaternary. Philos. Trans. R. Soc. Lond. B Biol. Sci. 359:183-195. https://doi.org/10.1098/rstb.2003.1388
  15. Hoarau, G., Coyer, J. A., Veldsink, J. H., Stam, W. T. & Olsen, J. L. 2007. Glacial refugia and recolonization pathways in the brown seaweed Fucus serratus. Mol. Ecol. 16:3606-3616. https://doi.org/10.1111/j.1365-294X.2007.03408.x
  16. Hu, Z. -M., Kantachumpoo, A., Liu, R. -Y., Sun, Z. -M., Yao, J. -T., Komatsu, T., Uwai, S. & Duan, D. -L. 2018. A late Pleistocene marine glacial refugium in the south-west of Hainan Island, China: phylogeographic insights from the brown alga Sargassum polycystum. J. Biogeogr. 45:355-366. https://doi.org/10.1111/jbi.13130
  17. Hu, Z. -M., Li, J. -J., Sun, Z. -M., Gao, X., Yao, J. -T., Choi, H. -G., Endo, H. & Duan, D. -L. 2016. Hidden diversity and phylogeographic history provide conservation insights for the edible seaweed Sargassum fusiforme in the Northwest Pacific. Evol. Appl. 10:366-378. https://doi.org/10.1111/eva.12455
  18. Hu, Z. -M., Li, J. -J., Sun, Z. -M., Oak, J. -H., Zhang, J., Fresia, P., Grant, W. S. & Duan, D. -L. 2015. Phylogeographic structure and deep lineage diversification of the red alga Chondrus ocellatus Holmes in the Northwest Pacific. Mol. Ecol. 24:5020-5033. https://doi.org/10.1111/mec.13367
  19. Hu, Z. -M., Uwai, S., Yu, S.-H., Komatsu, T., Ajisaka, T. & Duan, D. -L. 2011. Phylogeographic heterogeneity of the brown macroalga Sargassum horneri (Fucaceae) in the northwestern Pacific in relation to late Pleistocene glaciation and tectonic configurations. Mol. Ecol. 20:3894-3909. https://doi.org/10.1111/j.1365-294X.2011.05220.x
  20. Ikehara, K. & Sano, O. 1986. Distribution and species composition of floating seaweeds collected in the Sado Straits of the Japan Sea. Bull. Jpn. Sea Reg. Fish. Res. Lab. 36:59-75.
  21. Ivings, S. 2017. Trade and Conflict at the Japanese Frontier: Hakodate as a Treaty Port, 1854-1884. J. Transcult. Stud. 8:103-137.
  22. Kim, K. M., Hoarau, G. G. & Boo, S. M. 2012. Genetic structure and distribution of Gelidium elegans (Gelidiales, Rhodophyta) in Korea based on mitochondrial cox1 sequence data. Aquat. Bot. 98:27-33. https://doi.org/10.1016/j.aquabot.2011.12.005
  23. Kim, S. Y., Weinberger, F. & Boo, S. M. 2010. Genetic data hint at a common donor region for invasive Atlantic and Pacific populations of Gracilaria vermiculophylla (Gracilariales, Rhodophyta). J. Phycol. 46:1346-1349. https://doi.org/10.1111/j.1529-8817.2010.00905.x
  24. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Ecol. 16:111-120. https://doi.org/10.1007/BF01731581
  25. Koh, Y. H. & Kim, M. S. 2019. Genetic diversity and distribution pattern of economic seaweeds Pyropia yezoensis and Py. suborbiculata (Bangiales, Rhodophyta) in the northwest Pacific. J. Appl. Phycol. 32:2495-2504. https://doi.org/10.1007/s10811-019-01984-6
  26. Le Gall, L. & Saunders, G. W. 2010. DNA barcoding is a powerful tool to uncover algal diversity: a case study of the Phyllophoraceae (Gigartinales, Rhodophyta) in the Canadian flora. J. Phycol. 46:374-389. https://doi.org/10.1111/j.1529-8817.2010.00807.x
  27. Lee, H. W., Bae, E. H. & Kim, M. S. 2020. Umbraulva yunsella sp. nov. (Ulvaceae, Chlorophyta) from a subtidal habitat of Jeju Island, Korea. Algae 35:349-359. https://doi.org/10.4490/algae.2020.35.12.3
  28. Lee, J. W., Oh, B. -G. & Lee, H. -B. 1996. Morphological variations of Gloiopeltis furcata (Postels et Ruprecht) J. Agardh (Rhodophyta) in the East coast of Korea. Algae 11:91-94.
  29. Lee, K. M., Yang, E. C., Coyer, J. A., Zuccarello, G. C., Wang, W.-L., Choi, C. G. & Boo, S. M. 2012. Phylogeography of the seaweed Ishige okamurae (Phaeophyceae): evidence for glacial refugia in the northwest Pacific region. Mar. Biol. 159:1021-1028. https://doi.org/10.1007/s00227-012-1882-0
  30. Li, J. -J., Hu, Z.-M., Gao, X., Sun, Z. -M., Choi, H. -G., Duan, D. -L. & Endo, H. 2017. Oceanic currents drove population genetic connectivity of the brown alga Sargassum thunbergii in the north-west Pacific. J. Biogeogr. 44:230-242. https://doi.org/10.1111/jbi.12856
  31. McCarthy, C. 1998. Chromas version 1.45. School of Health Science, Griffith University, Southport.
  32. Neiva, J., Assis, J., Coelho, N. C., Femandes, F., Pearson, G. A. & Serrao, E. A. 2015. Genes left behind: climate change threatens cryptic genetic diversity in the canopy-forming seaweed Bifurcaria bifurcata. PLoS ONE 10:e0131530. https://doi.org/10.1371/journal.pone.0131530
  33. Neiva, J., Serrao, E. A., Paulino, C., Gouveia, L., Want, A., Tamigneaus, E., Ballenghien, M., Mauger, S., Fouqueau, L., Engel-Gautier, C., Destombe, C. & Valero, M. 2020. Genetic structure of amphi-Atlantic Laminaria digitata (Laminariales, Phaeophyceae) reveals a unique rangeedge gene pool and suggests post-glacial colonization of the NW Atlantic. Eur. J. Phycol. 55:517-528. https://doi.org/10.1080/09670262.2020.1750058
  34. Oh, B. -G. & Lee, H. -B. 1996. Morphology of three species of Gloiopeltis (Endocladiaceae, Rhodophyta) in Korea. Algae 11:81-90.
  35. Pauls, S. Y., Thorsten Lumbsch, H. & Haase, P. 2006. Phylogeography of the montane caddisfly Drusus discolor: evidence for multiple refugia and periglacial survival. Mol. Ecol. 15:2153-2169. https://doi.org/10.1111/j.1365-294X.2006.02916.x
  36. Provan, J. & Bennett, K. D. 2008. Phylogeographic insights into cryptic glacial refugia. Trends Ecol. Evol. 23:564-571. https://doi.org/10.1016/j.tree.2008.06.010
  37. Provan, J., Wattier, R. A. & Maggs, C. A. 2005. Phylogeographic analysis of the red seaweed Palmaria palmata reveals a Pleistocene marine glacial refugium in the English Channel. Mol. Ecol. 14:793-803. https://doi.org/10.1111/j.1365-294X.2005.02447.x
  38. Saito, Y. 1970. The reason of poor macroalgal flora along the coast of Sea of Japan: from an ecological point of view. Kagaku 40:561-565.
  39. Saunders, G. W. & McDevit, D. C. 2012. Acquiring DNA sequence data from dried archival red algae (Florideophyceae) for the purpose of applying available names to contemporary genetic species: a critical assessment. Botany 90:191-203. https://doi.org/10.1139/b11-079
  40. Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Soding, J., Thompson, J. D. & Higgins, D. G. 2011. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7:539. https://doi.org/10.1038/msb.2011.75
  41. Stamatakis, A. 2006. RAxML-VI-HPC: maximum likelihoodbased phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688-2690. https://doi.org/10.1093/bioinformatics/btl446
  42. Straub, S. C., Thomsen, M. S. & Wernberg, T. 2016. The dynamic biogeography of the anthropocene: the speed of recent range shifts in seaweeds. In Hu, Z. -M. & Fraser, C. (Eds.) Seaweed Phylogeography. Springer, Amsterdam, pp. 63-93.
  43. Tajima, F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585-595. https://doi.org/10.1093/genetics/123.3.585
  44. Wang, P. 1999. Response of Western Pacific marginal seas to glacial cycles: paleoceanographic and sedimentological features. Mar. Geol. 156:5-39. https://doi.org/10.1016/S0025-3227(98)00172-8
  45. Yang, E. C., Lee, S. Y., Lee, W. J. & Boo, S. M. 2009. Molecular evidence for recolonization of Ceramium japonicum (Ceramiaceae, Rhodophyta) on the west coast of Korea after the last glacial maximum. Bot. Mar. 52:307-315. https://doi.org/10.1515/BOT.2009.005
  46. Yang, M. Y. & Kim, M. S. 2018. DNA barcoding of the funoranproducing red algal genus Gloiopeltis (Gigartinales) and description of a new species, Gloiopeltis frutex sp. nov. J. Appl. Phycol. 30:1381-1392. https://doi.org/10.1007/s10811-017-1330-0
  47. Yang, M. Y., Yang, E. C. & Kim, M. S. 2020. Genetic diversity hotspot of the amphi-Pacific macroalga Gloiopeltis furcata sensu lato (Gigartinales, Florideophyceae). J. Appl. Phycol. 32:2515-2522. https://doi.org/10.1007/s10811-019-02017-y
  48. Zhang, J., Yao, J. -T., Sun, Z. -M., Fu, G., Galanin, D. A., Nagasato, C., Motomura, T., Hu, Z. -M. & Duan, D. -L. 2015. Phylogeographic data revealed shallow genetic structure in the kelp Saccharina japonica (Laminariales, Phaeophyta). BMC Evol. Biol. 15:237. https://doi.org/10.1186/s12862-015-0517-8

Cited by

  1. Population Genetic Structure and Phylogeography of Co-Distributed Pachymeniopsis Species (Rhodophyta) along the Coast of Korea and Japan vol.13, pp.8, 2021, https://doi.org/10.3390/d13080336