DOI QR코드

DOI QR Code

Theoretical and practical features of J-scaled distortion-free HSQC

  • Cha, Jin Wook (Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products) ;
  • Park, Sunghyouk (Natural Product Research Institute, College of Pharmacy, Seoul National University)
  • Received : 2021.03.19
  • Accepted : 2021.03.19
  • Published : 2021.03.20

Abstract

Employing of 13C stable-isotopes in NMR metabolomics can give unique splitting patterns and coupling constants information originated from 13C-13C coupling interaction that provide an important structural information regarding the cellular metabolic process. But it has been known that an undesirable signal distortion in 2D heteronuclear correlation study, due to 13C-13C interaction, hampers an analysis of the coupling information. Recently, we proposed J-scaled distortion-free heteronuclear single-quantum coherence (HSQC) sequence which provides a distortion-free 13C-13C coupling information with a selective resolution enhancement of JCC splitting. In this paper, we dicuss theoretical aspect and practical feature of J-scaled HSQC pulse sequence. The conceptual explanation of orgin of the signal distortion by 13C-13C coupling interaction and design of J-scaled HSQC through exemplified results are provided in brief.

Keywords

References

  1. E. Moser, E. Laistler, F. Schmitt and G. Kontaxis, Front. Phys. 5 (2017)
  2. R. Gruetter, G. Adriany, I. Y. Choi, P. G. Henry, H. Lei and G. Oz, NMR Biomed. 16, 313 (2003) https://doi.org/10.1002/nbm.841
  3. S. Lee, H. Wen, Y. J. An, J. W. Cha, Y. J. Ko, S. G. Hyberts and S. Park, Anal. Chem. 89, 1078 (2017) https://doi.org/10.1021/acs.analchem.6b02107
  4. U. Singh, S. Bhattacharya and B. Baishya, J. Magn. Reson. 311 (2020)
  5. J. W. Cha, X. Jin, S. Jo, Y. J. An and S. Park, Chem. Sci., DOI: 10.1039/d0sc06480g (2021)
  6. E. Kupce and R. Freeman, J. Magn. Reson., Ser A 117, 246 (1995) https://doi.org/10.1006/jmra.1995.0750
  7. J. Keeler, R. T. Clowes, A. L. Davis and E. D. Laue, Methods Enzymol. 239, 145 (1994) https://doi.org/10.1016/S0076-6879(94)39006-1
  8. R. A. DeGraaf and K. Nicolay, Concepts Magn. Reson. 9, 247 (1997) https://doi.org/10.1002/(SICI)1099-0534(1997)9:4<247::AID-CMR4>3.0.CO;2-Z
  9. T. L. Hwang, P. C. M. van Zijl and M. Garwood, J. Magn. Reson. 133, 200 (1998) https://doi.org/10.1006/jmre.1998.1441
  10. T. L. Hwang, P. C. M. van Zijl and M. Garwood, J. Magn. Reson. 124, 250 (1997) https://doi.org/10.1006/jmre.1996.1049
  11. T. L. Hwang and A. J. Shaka, J. Magn. Reson., Ser A 112, 275 (1995) https://doi.org/10.1006/jmra.1995.1047
  12. J. Keeler and D. Neuhaus, J. Magn. Reson. 63, 454 (1985) https://doi.org/10.1016/0022-2364(85)90236-7
  13. D. J. States, R. A. Haberkorn and D. J. Ruben, J. Magn. Reson. 48, 286 (1982) https://doi.org/10.1016/0022-2364(82)90279-7
  14. D. Marion and K. Wuthrich, Biochem. Biophys. Res. Commun. 113, 967 (1983) https://doi.org/10.1016/0006-291X(83)91093-8
  15. D. Marion, M. Ikura, R. Tschudin and A. Bax, J. Magn. Reson. 85, 393 (1989) https://doi.org/10.1016/0022-2364(89)90152-2
  16. R. V. Hosur, Prog. Nucl. Magn. Reson. Spectrosc. 22, 1 (1990) https://doi.org/10.1016/0079-6565(90)80013-8
  17. W. Willker, U. Flogel and D. Leibfritz, J. Magn. Reson. 125, 216 (1997) https://doi.org/10.1006/jmre.1996.1101
  18. A. G. Palmer, J. Cavanagh, P. E. Wright and M. Rance, J. Magn. Reson. 93, 151 (1991) https://doi.org/10.1016/0022-2364(91)90036-S