참고문헌
- Abedini, M., Mutalib, A.A,. Zhang, C,. Mehrmashhadi, J., Raman, S.N., Alipour, R., Momeni, T. and Mussa, M.H. (2020a), "Large deflection behavior effect in reinforced concrete columns exposed to extreme dynamic loads", Front. Struct. Civil Eng., 14(2), 532-553. https://doi.org/10.1007/s11709-020-0604-9.
- Abedini, M. and Zhang, C. (2020), "Performance Assessment of Concrete and Steel Material Models in LS-DYNA for Enhanced Numerical Simulation, A State of the Art Review", Archiv. Comput. Method. Eng., https://doi.org/10.1007/s11831-020-09483-5
- Abedini, M. and Zhang, C. (2021), "Dynamic performance of concrete columns retrofitted with FRP using segment pressure technique", Compos. Struct., 260, https://doi.org/10.1016/j.compstruct.2020.113473.
- Abedini, M., Zhang, C., Mehrmashhadi, J. and Akhlaghi, E. (2020b), "Comparison of ALE, LBE and pressure time history methods to evaluate extreme loading effects in RC column", Structures, 456-466. https://doi.org/10.1016/j.istruc.2020.08.084.
- Agnihotri, S., Atre, A. and Verma, H. (2000), "Equilibrium Optimizer for Solving Economic Dispatch Problem", Proceedings of the 2020 IEEE 9th Power India International Conference (PIICON) 1-5.
- Alam, Z., Zhang, C. and Samali, B. (2020a), "Influence of seismic incident angle on response uncertainty and structural performance of tall asymmetric structure", Struct. Des. Tall Spec. Build., 29(12), https://doi.org/10.1002/tal.1750.
- Alam, Z., Zhang, C. and Samali, B. (2020b), "The role of viscoelastic damping on retrofitting seismic performance of asymmetric reinforced concrete structures", Earthq. Eng. Eng. Vib., 19 (1), 223-237. https://doi.org/10.1007/s11803-020-0558-x.
- Almagboul, M.A., Shu, F., Qian, Y., Zhou, X., Wang, J. and Hu, J. (2019), "Atom search optimization algorithm based hybrid antenna array receive beamforming to control sidelobe level and steering the null", AEU-Int. J. Electron. Commun., 111 152854. https://doi.org/10.1016/j.aeue.2019.152854.
- Aydogdu, I., Carbas, S. and Akin, A. (2017), "Effect of Levy Flight on the discrete optimum design of steel skeletal structures using metaheuristics", Steel Compos. Struct., 24 (1), 93-112. https://doi.org/10.12989/scs.2017.24.1.093.
- Behnood, A. and Golafshani, E.M. (2018), "Predicting the compressive strength of silica fume concrete using hybrid artificial neural network with multi-objective grey wolves", J. Cleaner Production, 202 54-64. https://doi.org/10.1016/j.jclepro.2018.08.065.
- Behnood, A., Verian, K.P. and Gharehveran, M.M. (2015), "Evaluation of the splitting tensile strength in plain and steel fiber-reinforced concrete based on the compressive strength", Constr. Build. Mater., 98 519-529. https://doi.org/10.1016/j.conbuildmat.2015.08.124.
- Bui, D.K., Nguyen, T., Chou, J.S., Nguyen-Xuan, H. and Ngo, T.D. (2018), "A modified firefly algorithm-artificial neural network expert system for predicting compressive and tensile strength of high-performance concrete", Constr. Build. Mater., 180, 320-333. https://doi.org/10.1016/j.conbuildmat.2018.05.201.
- Bui, D.T., Ghareh, S., Moayedi, H. and Nguyen, H. (2019), "Fine-tuning of neural computing using whale optimization algorithm for predicting compressive strength of concrete", Eng. Comput., 1-12. https://doi.org/10.1007/s00366-019-00850-w.
- Cao, B., Dong, W., Lv, Z., Gu, Y., Singh, S. and Kumar, P. (2020a), "Hybrid Microgrid Many-Objective Sizing Optimization With Fuzzy Decision", IEEE T. Fuzzy Syst., 28 (11), 2702-2710. https://doi.org/10.1109/tfuzz.2020.3026140
- Cao, B., Fan, S., Zhao, J., Yang, P., Muhammad, K. and Tanveer, M (2020b), "Quantum-enhanced multiobjective large-scale optimization via parallelism", Swarm Evolutionary Comput., 57 100697. https://doi.org/10.1016/j.swevo.2020.100697.
- Cao, B., Wang, X., Zhang, W. and Song, H. and Lv, Z. (2020c), "A Many-Objective Optimization Model of Industrial Internet of Things Based on Private Blockchain", IEEE Network, 34(5), 78-83. https://doi.org/10.1109/MNET.011.1900536.
- Cao, B., Zhao, J., Gu, Y., Fan, S. and Yang, P. (2020d), "Security-Aware Industrial Wireless Sensor Network Deployment Optimization", IEEE T. Ind. Inform., 16(8), 5309-5316. https://doi.org/10.1109/TII.2019.2961340.
- Cao, B., Zhao, J., Gu, Y., Ling, Y. and Ma, X. (2020e), "Applying graph-based differential grouping for multiobjective large-scale optimization", Swarm Evolutionary Comput., 53, 100626. https://doi.org/10.1016/j.swevo.2019.100626.
- Cao, B., Zhao, J., Lv, Z., Gu, Y., Yang, P. and Halgamuge, S.K. (2020f), "Multiobjective Evolution of Fuzzy Rough Neural Network via Distributed Parallelism for Stock Prediction", IEEE T. Fuzzy Syst., 28(5), 939-952. https://doi.org/10.1109/TFUZZ.2020.2972207.
- Cao, Y., Li, Y., Zhang, G., Jermsittiparsert, K. and Nasseri, M. (2020g), "An efficient terminal voltage control for PEMFC based on an improved version of whale optimization algorithm", Energy Reports, 6, 530-542. https://doi.org/10.1016/j.egyr.2020.02.035.
- Chaabene, W.B., Flah, M. and Nehdi, M.L. (2020), "Machine learning prediction of mechanical properties of concrete: Critical review", Constr. Build. Mater., 260 119889. https://doi.org/10.1016/j.conbuildmat.2020.119889.
- Chandwani, V., Agrawal, V. and Nagar, R. (2015), "Modeling slump of ready mix concrete using genetic algorithms assisted training of Artificial Neural Networks", Exp. Syst. Appl., 42(2), 885-893. https://doi.org/10.1016/j.eswa.2014.08.048.
- Chen, F., Zhong, Y., Gao, X., Jin, Z., Wang, E., Zhu, F., Shao, X. and He, X .(2021), "Non-uniform Model of Relationship Between Surface Strain and Rust Expansion Force of Reinforced Concrete".
- Chen, H., Chen, A., Xu, L., Xie, H., Qiao, H., Lin, Q. and Cai, K. (2020a), "A deep learning CNN architecture applied in smart near-infrared analysis of water pollution for agricultural irrigation resources", Agricultural Water Management, 240, https://doi.org/10.1016/j.agwat.2020.106303.
- Chen, H., Qiao, H., Xu, L., Feng, Q. and Cai, K. (2019), "A Fuzzy Optimization Strategy for the Implementation of RBF LSSVR Model in Vis-NIR Analysis of Pomelo Maturity", IEEE T. Ind. Inform., 15(11), 5971-5979. https://doi.org/10.1109/TII.2019.2933582.
- Chen, Y., He, L., Guan, Y., Lu, H. and Li, J. (2017), "Life cycle assessment of greenhouse gas emissions and water-energy optimization for shale gas supply chain planning based on multi-level approach: Case study in Barnett, Marcellus, Fayetteville, and Haynesville shales", Energ. Convers. Manage., 134, 382-398. https://doi.org/10.1016/j.enconman.2016.12.019.
- Chen, Z., Wang, J., Ma, K., Huang, X. and Wang, T. (2020b), "Fuzzy adaptive two-bits-triggered control for nonlinear uncertain system with input saturation and output constraint", Int. J. Adaptive Control Signal Process., 34(4), 543-559. https://doi.org/10.1002/acs.3098
- DeRousseau, M., Kasprzyk, J. and Srubar III, W. (2018), "Computational design optimization of concrete mixtures: A review", Cement Concrete Res., 109, 42-53. https://doi.org/10.1016/j.cemconres.2018.04.007.
- Ding, L., Li, S., Gao, H., Chen, C. and Deng, Z. (2018), "Adaptive partial reinforcement learning neural network-based tracking control for wheeled mobile robotic systems", IEEE T. Syst. Man, Cy.: Syst., 50(7), 2512-2523. https://doi.org/10.1109/tsmc.2018.2819191
- Faramarzi, A., Heidarinejad, M., Stephens, B. and Mirjalili, S. (2020), "Equilibrium optimizer: A novel optimization algorithm", Knowledge-Based Syst., 191, 105190. https://doi.org/10.1016/j.knosys.2019.105190.
- Fu, X., Pace, P., Aloi, G., Yang, L. and Fortino, G. (2020), "Topology Optimization Against Cascading Failures on Wireless Sensor Networks Using a Memetic Algorithm", Computer Networks, 177(4), 107327. https://doi.org/10.1016/j.comnet.2020.107327.
- Gesoglu, M., Guneyisi, E., Nahhab, A.H. and Yazici, H. (2016), "The effect of aggregates with high gypsum content on the performance of ultra-high strength concretes and Portland cement mortars", Constr. Build. Mater., 110, 346-354. https://doi.org/10.1016/j.conbuildmat.2016.02.045.
- Getahun, M.A., Shitote, S.M. and Gariy, Z.C.A. (2018), "Artificial neural network based modelling approach for strength prediction of concrete incorporating agricultural and construction wastes", Constr. Build. Mater., 190, 517-525. https://doi.org/10.1016/j.conbuildmat.2018.09.097.
- Gholampour, A., Mansouri, I., Kisi, O. and Ozbakkaloglu, T. (2020), "Evaluation of mechanical properties of concretes containing coarse recycled concrete aggregates using multivariate adaptive regression splines (MARS), M5 model tree (M5Tree), and least squares support vector regression (LSSVR) models", Neural Comput. Appl., 32(1), 295-308. https://doi.org/10.1007/s00521-018-3630-y.
- Gholipour, G., Zhang, C. and Mousavi, A.A. (2020), "Numerical analysis of axially loaded RC columns subjected to the combination of impact and blast loads", Eng. Struct., 219, https://doi.org/10.1016/j.engstruct.2020.110924.
- Golafshani, E.M., Behnood, A. and Arashpour, M. (2020), "Predicting the compressive strength of normal and High-Performance Concretes using ANN and ANFIS hybridized with Grey Wolf Optimizer", Constr. Build. Mater., 232, 117266. https://doi.org/10.1016/j.conbuildmat.2019.117266.
- Grzywinski, M., Selejdak, J. and Dede, T. (2019), "Shape and size optimization of trusses with dynamic constraints using a metaheuristic algorithm", Steel Compos. Struct., 33(5), 747-753. 10.12989/scs.2019.33.5.747
- Gulbandilar, E. and Kocak, Y. (2019), "Prediction of Splitting Tensile Strength of Concrete Containing Zeolite and Diatomite by ANN", Int. J. Economic Environ. Geology, 32-40. https://doi.org/10.46660/ijeeg.Vol0.Iss0.0.41.
- He, L., Chen, Y. and Li, J. (2018), "A three-level framework for balancing the tradeoffs among the energy, water, and air-emission implications within the life-cycle shale gas supply chains", Resour. Conserv. Recy., 133, 206-228. https://doi.org/10.1016/j.resconrec.2018.02.015
- Hekimoglu, B. (2019), "Optimal tuning of fractional order PID controller for DC motor speed control via chaotic atom search optimization algorithm", IEEE Access, 7, 38100-38114. https://doi.org/10.1109/ACCESS.2019.2905961.
- Huang, H., Huang, M., Zhang, W., Pospisil, S. and Wu, T. (2020), "Experimental investigation on rehabilitation of corroded RC columns with bsp and hpfl under combined loadings", J. Struct. Eng., 146(8), https://doi.org/10.1061/(ASCE)ST.1943-541X.0002725.
- Jiang, W., Xie, Y., Li, W., Wu, J. and Long, G. (2021), "Prediction of the splitting tensile strength of the bonding interface by combining the support vector machine with the particle swarm optimization algorithm", Eng. Struct., 230, https://doi.org/10.1016/j.engstruct.2020.111696.
- Jovic, S., Babic, L., Miskovic, A., Cirkovic, B. and Camagic, I .(2019), "Ranking of the most influential parameters for compressive strength of no-slump concrete prediction by neuro-fuzzy logic", Struct. Concrete, https://doi.org/10.1002/suco.201900349.
- Ju, Y., Shen, T. and Wang, D. (2020), "Bonding behavior between reactive powder concrete and normal strength concrete", Constr. Build. Mater., 242, https://doi.org/10.1016/j.conbuildmat.2020.118024.
- Kadhem, E., Ali, A. and Tobeia, S. (2018), "Experimental comparative study of reactive powder concrete: mechanical properties and the effective factors", MATEC Web of Conferences, https://doi.org/10.1051/matecconf/201816204004.
- Karthiyaini, S., Senthamaraikannan, K., Priyadarshini, J., Gupta, K. and Shanmugasundaram, M. (2019), "Prediction of mechanical strength of fiber admixed concrete using multiple regression analysis and artificial neural network", Adv. Mater. Sci. Eng., 2019, https://doi.org/10.1155/2019/4654070.
- Khan, M.I. (2012), "Predicting properties of high performance concrete containing composite cementitious materials using artificial neural networks", Automat. Constr., 22, 516-524. https://doi.org/10.1016/j.autcon.2011.11.011.
- Kim, S.E., Vu, Q.V., Papazafeiropoulos, G., Kong, Z. and Truong, V.H. (2020), "Comparison of machine learning algorithms for regression and classification of ultimate load-carrying capacity of steel frames", Steel Compos. Struct., 37(2), 193-209. https://doi.org/10.12989/scs.2020.37.2.193.
- Kordestani, H., Zhang, C. and Shadabfar, M. (2020), "Beam damage detection under a moving load using random decrement technique and Savitzky-Golay Filter", Sensors, 20(1), 243. https://doi.org/10.3390/s20010243
- Li, C., Sun, L., Xu, Z., Wu, X., Liang, T. and Shi, W. (2020), "Experimental investigation and error analysis of high precision FBG displacement sensor for structural health monitoring". Int. J. Struct. Stab. Dynam., 20(6), https://doi.org/10.1142/S0219455420400118.
- Li, T., Xu, M., Zhu, C., Yang, R., Wang, Z. and Guan, Z. (2019), "A deep learning approach for multi-frame in-loop filter of HEVC", IEEE T. Image Process., 28(11), 5663-5678. https://doi.org/10.1109/TIP.2019.2921877
- Li, J., Liu, Y. and Wang, X. (2020a), "An environmental assessment model of construction and demolition waste based on system dynamics: a case study in Guangzhou", Environ. Sci. Pollution Res., 27(30), 37237-37259. https://doi.org/10.1007/s11356-019-07107-5.
- Liu, J., Wu, C., Wu, G. and Wang, X. (2015), "A novel differential search algorithm and applications for structure design", Appl. Math. Comput., 268, 246-269. https://doi.org/10.1016/j.amc.2015.06.036.
- Liu, Y., Yang, C. and Sun, Q. (2020b), "Thresholds based image extraction schemes in big data environment in intelligent traffic management", IEEE T. Intell. Transp. Systems.
- Luat, N.V., Shin, J. and Lee, K. (2020), "Hybrid BART-based models optimized by nature-inspired metaheuristics to predict ultimate axial capacity of CCFST columns", Eng. Comput., 1-30. https://doi.org/10.1007/s00366-020-01115-7.
- Lv, Z. and Qiao, L. (2020), "Deep belief network and linear perceptron based cognitive computing for collaborative robots", Appl. Soft Comput., 92, https://doi.org/10.1016/j.asoc.2020.106300.
- Ma, X., Foong, L.K., Morasaei, A., Ghabussi, A. and Lyu, Z. (2020), "Swarm-based hybridizations of neural network for predicting the concrete strength", Smart Struct. Syst., 26(2), 241-251. https://doi.org/10.12989/sss.2020.26.2.241.
- Mashhadban, H., Kutanaei, S.S. and Sayarinejad, M.A. (2016), "Prediction and modeling of mechanical properties in fiber reinforced self-compacting concrete using particle swarm optimization algorithm and artificial neural network", Constr. Build. Mater., 119, 277-287. https://doi.org/10.1016/j.conbuildmat.2016.05.034.
- Moayedi, H., Kalantar, B., Foong, L.K., Tien Bui, D. and Motevalli, A. (2019a) "Application of three metaheuristic techniques in simulation of concrete slump", Appl. Sci., 9(20), 4340. https://doi.org/10.3390/app9204340.
- Moayedi, H., Mehrabi, M., Mosallanezhad, M., Rashid. A.S.A. and Pradhan, B. (2019b), "Modification of landslide susceptibility mapping using optimized PSO-ANN technique", Eng. Comput., 35(3), 967-984. https://doi.org/10.1007/s00366-018-0644-0.
- More, J.J. (1978), Numerical analysis, 105-116.
- Mou, B., Li, X., Bai, Y. and Wang, L. (2019a), "Shear behavior of panel zones in steel beam-to-column connections with unequal depth of outer annular stiffener", J. Struct. Eng., 145(2), 04018247. https://doi.org/10.1061/(asce)st.1943-541x.0002256
- Mou, B., Zhao, F., Qiao, Q., Wang, L., Li, H., He, B. and Hao, Z. (2019b), "Flexural behavior of beam to column joints with or without an overlying concrete slab", Eng. Struct., 199, 109616. https://doi.org/10.1016/j.engstruct.2019.109616
- Mousav, A.A., Zhang, C., Masri, S.F. and Gholipour, G. (2020), "Structural damage localization and quantification based on a ceemdan hilbert transform neural network approach: A model steel truss bridge case study", Sensors, 20(5), 1271. https://doi.org/10.3390/s20051271
- Murad, Y.Z., Hunifat, R. and Wassel, A.B. (2020), "Interior Reinforced Concrete Beam-to-Column Joints Subjected to Cyclic Loading: Shear Strength Prediction using Gene Expression Programming", Case Studies in Constr. Mater., 13 e00432. https://doi.org/10.1016/j.cscm.2020.e00432.
- Nazari, A. and Azimzadegan, T. (2012), "Prediction the effects of ZnO2 nanoparticles on splitting tensile strength and water absorption of high strength concrete", Mater. Res., 15(3), 440-454. https://doi.org/10.1590/S1516-14392012005000057.
- Nematzadeh, M., Shahmansouri, A.A. and Fakoor, M. (2020), "Post-fire compressive strength of recycled PET aggregate concrete reinforced with steel fibers: Optimization and prediction via RSM and GEP", Constr. Build. Mater., 252, 119057. https://doi.org/10.1016/j.conbuildmat.2020.119057.
- Nguyen, H., Mehrabi, M., Kalantar, B., Moayedi, H. and Abdullahi, M.A.M. (2019), "Potential of hybrid evolutionary approaches for assessment of geo-hazard landslide susceptibility mapping", Geomatics, Natural Hazards and Risk, 10(1), 1667-1693. https://doi.org/10.1080/19475705.2019.1607782
- Nguyen, M.S.T., Thai, D.K. and Kim, S.E. (2020), "Predicting the axial compressive capacity of circular concrete filled steel tube columns using an artificial neural network", Steel Compos. Struct., 35(3), 415-437. https://doi.org/10.12989/scs.2020.35.3.415
- Ozcan, F. (2012) "Gene expression programming based formulations for splitting tensile strength of concrete". Constr. Build. Mater., 26(1), 404-410. https://doi.org/10.1016/j.conbuildmat.2011.06.039.
- Piotrowski, A.P., Osuch, M., Napiorkowski, M.J., Rowinski, P.M. and Napiorkowski, J.J. (2014), "Comparing large number of metaheuristics for artificial neural networks training to predict water temperature in a natural river", Comput. Geosci., 64, 136-151. https://doi.org/10.1016/j.cageo.2013.12.013.
- Qian, J., Feng, S., Li, Y., Tao, T., Han, J., Chen, Q. and Zuo, C. (2020a), "Single-shot absolute 3D shape measurement with deep-learning-based color fringe projection profilometry", Opt. Lett., 45(7), 1842-1845. https://doi.org/10.1364/OL.388994.
- Qian, J., Feng, S., Tao, T., Hu, Y., Li, Y., Chen, Q. and Zuo, C. (2020b), "Deep-learning-enabled geometric constraints and phase unwrapping for single-shot absolute 3D shape measurement". APL Photonics, 5(4), 046105. https://doi.org/10.1063/5.0003217.
- Qiu, T., Shi, X., Wang, J., Li, Y., Qu, S., Cheng, Q., Cui, T. and Sui, S. (2019), "Deep Learning: A Rapid and Efficient Route to Automatic Metasurface Design", Adv. Sci., 6(12), 1900128. https://doi.org/10.1002/advs.201900128.
- Qu, S., Han, Y., Wu, Z. and Raza, H. (2020), "Consensus Modeling with Asymmetric Cost Based on Data-Driven Robust Optimization", Group Decision and Negotiation https://doi.org/10.1007/s10726-020-09707-w.
- Quan, Q., Hao, Z., Xifeng, H. and Jingchun, L. (2020), "Research on water temperature prediction based on improved support vector regression", Neural Comput. Appl., 1-10. https://doi.org/10.1007/s00521-020-04836-4.
- Rabehi, A., Nail, B., Helal, H., Douara, A., Ziane, A., Amrani, M., Akkal, B. and Benamara, Z. (2020), "Optimal estimation of Schottky diode parameters using a novel optimization algorithm: Equilibrium optimizer", Superlatt.Microstruct., 146, 106665. https://doi.org/10.1016/j.spmi.2020.106665.
- Roy, D.K., Barzegar, R., Quilty, J. and Adamowski, J. (2020), "Using ensembles of adaptive neuro-fuzzy inference system and optimization algorithms to predict reference evapotranspiration in subtropical climatic zones", J. Hydrology, 591, 125509. https://doi.org/10.1016/j.jhydrol.2020.125509.
- Severcan, M.H. (2012), "Prediction of splitting tensile strength from the compressive strength of concrete using GEP", Neural Comput. Appl., 21(8), 1937-1945. https://doi.org/10.1007/s00521-011-0597-3.
- Seyedashraf, O., Mehrabi, M. and Akhtari, A.A. (2018), "Novel approach for dam break flow modeling using computational intelligence", J. Hydrology, 559, 1028-1038. https://doi.org/10.1016/j.jhydrol.2018.03.001.
- Shaswat, K. (2021), "Concrete slump prediction modeling with a fine-tuned convolutional neural network: hybridizing sea lion and dragonfly algorithms", Environ. Sci. Pollut. Res., 1-12. https://doi.org/10.1007/s11356-020-12244-3.
- Shi, K., Wang, J., Tang, Y. and Zhong, S. (2020a), "Reliable asynchronous sampled-data filtering of T-S fuzzy uncertain delayed neural networks with stochastic switched topologies", Fuzzy Set. Syst., 381, 1-25. https://doi.org/10.1016/j.fss.2018.11.017.
- Shi, K., Wang, J., Zhong, S., Tang, Y. and Cheng, J. (2020b), "Non-fragile memory filtering of T-S fuzzy delayed neural networks based on switched fuzzy sampled-data control", Fuzzy Set. Syst., 394, 40-64. https://doi.org/10.1016/j.fss.2019.09.001.
- Sun, G., Yang, B., Yang, Z. and Xu, G. (2019), "An adaptive differential evolution with combined strategy for global numerical optimization", Soft Comput., 1-20. https://doi.org/10.1007/s00500-019-03934-3.
- Sun, L., Yang, Z., Jin, Q. and Yan, W. (2020a), "Effect of Axial Compression Ratio on Seismic Behavior of GFRP Reinforced Concrete Columns", Int. J. Struct. Stab. Dynam., 20(6), https://doi.org/10.1142/S0219455420400040.
- Sun, Y., Wang, J., Wu, J., Shi, W., Ji, D., Wang, X. and Zhao, X. (2020b), "Constraints hindering the development of high-rise modular buildings", Appl. Sci., 10(20), https://doi.org/10.3390/app10207159.
- Tavana Amlashi, A., Ghanizadeh, A.R., Abbaslou, H. and Alidoust, P. (2019), "Developing three hybrid machine learning algorithms for predicting the mechanical properties of plastic concrete samples with different geometries", AUT J. Civil Eng., 4(1), 4-4.
- Topcu, I.B. and Saridemir, M. (2008), "Prediction of mechanical properties of recycled aggregate concretes containing silica fume using artificial neural networks and fuzzy logic", Comput. Mater. Sci., 42(1), 74-82. https://doi.org/10.1016/j.commatsci.2007.06.011.
- Vakhshouri, B. and Nejadi, S. (2018), "Prediction of compressive strength of self-compacting concrete by ANFIS models", Neurocomput., 280, 13-22. 10.1016/j.neucom.2017.09.099.
- Wang, B., Zhang, B., Liu, X. and Zou, F. (2020a), "Novel infrared image enhancement optimization algorithm combined with DFOCS", Optik, 224, 165476. https://doi.org/10.1016/j.ijleo.2020.165476
- Wang, B., Zhang, B.F., Liu, X.W. and Zou, F.C. (2020b), "Novel infrared image enhancement optimization algorithm combined with DFOCS", Optik, 224, 165476. https://doi.org/10.1016/j.ijleo.2020.165476.
- Wang, J., Huang, Y., Wang, T., Zhang, C., Liu, Y hui (2020c), "Fuzzy finite-time stable compensation control for a building structural vibration system with actuator failures", Appl. Soft Comput., 93, https://doi.org/10.1016/j.asoc.2020.106372.
- Wu, C., Wang, X., Chen, M. and Kim, M.J. (2019a), "Differential received signal strength based RFID positioning for construction equipment tracking", Adv. Eng. Inform., 42, https://doi.org/10.1016/j.aei.2019.100960.
- Wu, C., Wu, P., Wang, J., Jiang, R., Chen, M. and Wang, X. (2021) "Ontological knowledge base for concrete bridge rehabilitation project management", Automat. Constr., 121, https://doi.org/10.1016/j.autcon.2020.103428.
- Wu, T., Cao, J., Xiong, L. nad Zhang, H, (2019b), "New Stabilization Results for Semi-Markov Chaotic Systems with Fuzzy Sampled-Data Control", Complexity, 2019, 7875305. https://doi.org/10.1155/2019/7875305.
- Xu, M., Li, T., Wang, Z., Deng, X., Yang, R. nad Guan, Z. (2018), "Reducing Complexity of HEVC: A Deep Learning Approach". IEEE T. Image Process., 27(10), 5044-5059. https://doi.org/10.1109/TIP.2018.2847035
- Xu, S., Wang, J., Shou, W., Ngo, T., Sadick, A.M. and Wang, X. (2020), "Computer vision techniques in construction: A critical review", Arch. Comput. Method. Eng., 1-15. https://doi.org/10.1007/s11831-020-09504-3.
- Yan, K., Xu, H., Shen, G. and Liu, P. (2013), "Prediction of splitting tensile strength from cylinder compressive strength of concrete by support vector machine", Adv. Mater. Sci. Eng., 2013, https://doi.org/10.1155/2013/597257
- Yang, C., Gao, F. and Dong, M. (2020a), "Energy Efficiency Modeling of Integrated Energy System in Coastal Areas", J. Coast. Res., 103, 995-1001. https://doi.org/10.2112/SI103-207.1.
- Yang, J., Li, S., Wang, Z., Dong, H., Wang, J. and Tang, S. (2020b), "Using Deep Learning to Detect Defects in Manufacturing: A Comprehensive Survey and Current Challenges", Materials, 13(24), https://doi.org/10.3390/ma13245755
- Yang, L. and Chen, H. (2019), "Fault diagnosis of gearbox based on RBF-PF and particle swarm optimization wavelet neural network", Neural Comput. Appl., 31(9), 4463-4478. https://doi.org/10.1007/s00521-018-3525-y.
- Yang, M. and Sowmya, A. (2015), "An underwater color image quality evaluation metric", IEEE T. Image Process., 24(12), 6062-6071. https://doi.org/10.1109/TIP.2015.2491020
- Zenggang, X., Zhiwen, T., Xiaowen, C., Xue-min, Z., Kaibin, Z. and Conghuan, Y. (2019), "Research on image retrieval algorithm based on combination of color and shape features", J. Signal Process. Syst., 1-8. https://doi.org/10.1007/s11265-019-01508-y.
- Zhang, C.W., Ou, J.P. and Zhang, J.Q. (2006), "Parameter optimization and analysis of a vehicle suspension system controlled by magnetorheological fluid dampers", Struct. Control Health Monit., 13(5), 885-896. https://doi.org/10.1002/stc.63.
- Zhang, C., Abedini, M. and Mehrmashhadi, J. (2020a), "Development of pressure-impulse models and residual capacity assessment of RC columns using high fidelity Arbitrary Lagrangian-Eulerian simulation", Eng. Struct., 224, https://doi.org/10.1016/j.engstruct.2020.111219.
- Zhang, C., Alam, Z., Sun, L., Su, Z. and Samali, B. (2019a), "Fibre Bragg grating sensor-based damage response monitoring of an asymmetric reinforced concrete shear wall structure subjected to progressive seismic loads", Struct. Control Health Monit., 26(3), e2307. https://doi.org/10.1002/stc.2307.
- Zhang, C., Gholipour, G. and Mousavi, A.A. (2019b), "Nonlinear dynamic behavior of simply-supported RC beams subjected to combined impact-blast loading", Eng. Struct., 181, 124-142. https://doi.org/10.1016/j.engstruct.2018.12.014.
- Zhang, C., Gholipour, G. and Mousavi, A.A. (2020b), "State-of-the-art review on responses of RC structures subjected to lateral impact loads", Arch. Comput. Method. Eng., 1-31. https://doi.org/10.1007/s11831-020-09467-5.
- Zhang, C. and Wang, H. (2019a), "Robustness of the Active Rotary Inertia Driver System for Structural Swing Vibration Control Subjected to Multi-Type Hazard Excitations", Appl. Sci., 9(20), https://doi.org/10.3390/app9204391.
- Zhang, C. and Wang, H. (2019b), "Swing Vibration Control of Suspended Structure Using Active Rotary Inertia Driver System: Parametric Analysis and Experimental Verification", Appl. Sci., 9(15), 3144. https://doi.org/10.3390/app9153144.
- Zhang, C. and Wang, H. (2020), "Swing vibration control of suspended structures using the Active Rotary Inertia Driver system: Theoretical modeling and experimental verification", Struct. Control Health Monit., 27(6), https://doi.org/10.1002/stc.2543.
- Zhang, H., Qiu, Z., Cao, J., Abdel-Aty, M. and Xiong, L. (2019c), "Event-triggered synchronization for neutral-type semi-Markovian neural networks with partial mode-dependent time-varying delays", IEEE T. Neural Networks Learning Syst., 31(11), 4437-4450. https://doi.org/10.1109/TNNLS.2019.2955287.
- Zhang, J., Huang, Y., Wang, Y. and Ma, G. (2020c), "Multi-objective optimization of concrete mixture proportions using machine learning and metaheuristic algorithms", Constr. Build. Mater., 253, 119208. https://doi.org/10.1016/j.conbuildmat.2020.119208.
- Zhang, S., Zhang, J., Ma, Y. and Pak, R.Y. (2021a), "Vertical dynamic interactions of poroelastic soils and embedded piles considering the effects of pile-soil radial deformations", Soils and Foundations, 61(1), 16-34. https://doi.org/10.1016/j.sandf.2020.10.003.
- Zhang, W. (2020), "Parameter Adjustment Strategy and Experimental Development of Hydraulic System for Wave Energy Power Generation", Symmetry, 12(5), 711. https://doi.org/10.3390/sym12050711.
- Zhang, W., Tang, Z., Yang, Y. and Wei, J. (2021b), "Assessment of FRP-Concrete Interfacial Debonding with Coupled Mixed-Mode Cohesive Zone Model", J. Compos. Constr., 25(2), 04021002. https://doi.org/10.1061/(ASCE)CC.1943-5614.0001114