참고문헌
- Abbas, I.A. and Zenkour, A.M. (2013), " LS model on electro-magneto-thermoelastic response of an infinite functionally graded cylinder", Compos. Struct., 96, 89-96. https://doi.org/10.1016/j.compstruct.2012.08.046.
- Abdelrahman, A.A., Abd-El-Mottaleb, H.E. and Eltaher, M.A. (2020), "On bending analysis of perforated microbeams including the microstructure effects", Struct. Eng. Mech., 76(6),765-779. https://doi.org/10.12989/sem.2020.76.6.765.
- Abdulrazzaq, M.A., Fenjan, R.M., Ahmed, R.A. and Faleh, N.M. (2020), "Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory", Steel Compos. Struct., 35(1), 147-157. https://doi.org/10.12989/scs.2020.35.1.147.
- Abrate, S. (2008), "Functionally graded plates behave like homogeneous plates", Compos. Part B: Eng., 39(1), 151-158. https://doi.org/10.1016/j.compositesb.2007.02.026.
- Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175
- Akbas, S.D. (2015), "Wave propagation of a functionally graded beam in thermal environments", Steel Compos. Struct., 19(6), 1421-1447. https://doi.org/10.12989/SCS.2015.19.6.1421.
- Al-Basyouni, K.S., Ghandourah, E., Mostafa, H.M. and Algarni, A. (2020), "Effect of the rotation on the thermal stress wave propagation in non-homogeneous viscoelastic body", Geomech. Eng., 21(1), 1-9. https://doi.org/10.12989/GAE.2020.21.1.001.
- Alijani, F. and Amabili, M. (2014), "Effect of thickness deformation on large-amplitude vibrations of functionally graded rectangular plates", Compos. Struct., 113, 89-107. https://doi.org/10.1016/j.compstruct.2014.03.006.
- Arefi, M. (2015), "The effect of different functionalities of FGM and FGPM layers on free vibration analysis of the FG circular plates integrated with piezoelectric layers", Smart Struct. Syst., 15(5), 1345-1362. https://doi.org/10.12989/SSS.2015.15.5.1345.
- Attia, M.A. (2017), "On the mechanics of functionally graded nanobeams with the account of surface elasticity", Int. J. Eng. Sci., 115,73-101. https://doi.org/10.1016/j.ijengsci.2017.03.011.
- Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.
- Bakhshi, N and Taheri-Behrooz, F. (2019), "Length effect on the stress concentration factor of a perforated orthotropic composite plate under in-plane loading", Compos. Mater. Eng.,1(1), 71-90. https://doi.org/10.12989/cme.2019.1.1.071.
- Barati, M.R. and Shahverdi, H. (2016), "An analytical solution for thermal vibration of compositionally graded nanoplates with arbitrary boundary conditions based on physical neutral surface position", Mech. Adv. Mater. Struct., 24(10), 840-853. https://doi.org/10.1080/15376494.2016.1196788.
- Benferhat, R., Daouadji, T.H. and Adim, B. (2016), "A novel higher order shear deformation theory based on the neutral surface concept of FGM plate under transverse load", Adv. Mater. Res., 5(2), 107-120. https://doi.org/10.12989/amr.2016.5.2.107.
- Benferhat, R., Daouadji, T.H. and Rabahi, A. (2021b), "Effect of air bubbles in concrete on the mechanical behavior of RC beams strengthened in flexion by externally bonded FRP plates under uniformly distributed loading", Compos. Mater. Eng., 3(1), 41-55. https://doi.org/10.12989/cme.2021.3.1.041.
- Benferhat, R., Daouadji, T.H. and Rabahi, A. (2019), "Effect of porosity in interfacial stress analysis of perfect FGM beams reinforced with a porous functionally graded materials plate", Struct. Eng. Mech., 72(3), 293-304. https://doi.org/10.12989/sem.2019.72.3.293.
- Benferhat, R., Daouadji, T.H., and Rabahi, A. (2021a), "Effect of porosity on fundamental frequencies of FGM sandwich plates", Composite Materials and Engineering., 3(1), 25-40. https://doi.org/10.12989/cme.2021.3.1.025.
- Bensattalah, T., Bouakkaz, K., Zidour, M. and Daouadji, T.H. (2019a), "Critical buckling loads of carbon nanotube embedded in Kerr's medium", Adv. Nano Res., 6(4), 339. https://doi.org/10.12989/anr.2018.6.4.339.
- Bensattalah, T., Zidour, M. and Daouadji, T.H. (2019b), "A new nonlocal beam model for free vibration analysis of chiral single-walled carbon nanotubes", Compos. Mater. Eng., 1(1), 21-31. https://doi.org/10.12989/cme.2019.1.1.021.
- Bharath, H.S., Waddar, S., Bekinal, S.I., Jeyaraj, P. and Doddamani, M. (2020), "Effect of axial compression on dynamic response of concurrently printed sandwich", Compos. Struct.,13223. http://dx.doi.org/10.1016/j.compstruct.2020.113223.
- Boulal, A., Bensattalah, T., Karas, A., Zidour, M., Heireche, H. and Adda Bedia, E. A. (2020), "Buckling of carbon nanotube reinforced composite plates supported by Kerr foundation using Hamilton's energy principle", Struct. Eng. Mech., 73(2), 209-223. https://doi.org/10.12989/sem.2020.73.2.209.
- Chami, K. Messafer, T. and Hadji, L. (2020), "Analytical modeling of bending and free vibration of thick advanced composite beams resting on Winkler-Pasternak elastic foundation", Earthq. Struct., 19(2), 91-101. https://doi.org/10.12989/eas.2020.19.2.091.
- Civalek, O., Dastjerdi, S., Akbas, S.D. and Akgoz, B. (2020), "Vibration Analysis of Carbon Nanotube-Reinforced Composite Microbeams", Math. Method. Appl. Sci., https://doi.org/10.1002/mma.7069.
- Daouadji, T.H. and Hadji, L. (2015), "Analytical solution of nonlinear cylindrical bending for functionally graded plates", Geomech. Eng., 9(5), 631-644. https://doi.org/10.12989/gae.2015.9.5.631.
- Daraei, B., Shojaee, S. and Hamzehei-Javaran, S. (2020), "Free vibration analysis of axially moving laminated beams with axial tension based on 1D refined theories using Carrera unified formulation", Steel Compos. Struct., 37(1), 037-49. http://dx.doi.org/10.12989/scs.2020.37.1.037.
- Darilmaz, K. (2015), "Vibration analysis of functionally graded material (FGM) grid systems", Steel Compos. Struct., 18(2), 395-408. https://doi.org/10.12989/scs.2015.18.2.395.
- Ding, J., Chu, L., Xin, L. and Dui, G. (2018), "Nonlinear vibration analysis of functionally graded beams considering the influences of the rotary inertia of the cross section and neutral surface position", Mech. Based Des. Struct. Machines, 46(2), 225-237. https://doi.org/10.1080/15397734.2017.1329020.
- Eldeeb, A.M., Shabana, Y.M. and Elsawaf, A. (2020a)," Influences of Angular Deceleration on the Thermoelastoplastic Behaviors of Nonuniform Thickness Multilayer FGM Discs", Compos. Struct.,113092. https://doi.org/10.1016/j.compstruct.2020.113092.
- Eldeeb, A., Shabana, Y. and Elsawaf, A. (2020b), "Thermo-elastoplastic behavior of a rotating sandwich disc made of temperature-dependent functionally graded materials", J. Sandw. Struct. Mater., 109963622090497. https://doi.org/10.1177/1099636220904970.
- Eltaher, M.A., Almalki, T.A., Almitani, K. and Ahmed, K.I. (2019b), "Participation Factor and Vibration of Carbon Nanotube with Vacancies", J. Nano Res., 57, 158-174. https://doi.org/10.4028/www.scientific.net/jnanor.57.158.
- Eltaher, M.A., Mohamed, N., Mohamed, S. and Seddek, L.F. (2019a), "Postbuckling of Curved Carbon Nanotubes Using Energy Equivalent Model", J. Nano Res., 57, 136-157. https://doi.org/10.4028/www.scientific.net/jnanor.57.136.
- Eyvazian, A., Hamouda, A.M., Tarlochan, F., Mohsenizadeh, S., and Dastjerdi, A.A. (2019), "Damping and vibration response of viscoelastic smart sandwich plate reinforced with non-uniform Graphene platelet with magnetorheological fluid core", Steel Compos. Struct., 33(6), 891-906. https://doi.org/10.12989/scs.2019.33.6.891.
- Eyvazian, A., Musharavati, F., Talebizadehsardari, P. and Sebaey, A.T., (2020), "Free vibration of FG-GPLRC spherical shell on two parameter elastic foundation", Steel Compos. Struct., 36(6), 711-727. https://doi.org/10.12989/scs.2020.36.6.711.
- Farzam-Rad, S.A., Hassani, B. and Karamodin, A. (2017), "Isogeometric analysis of functionally graded plates using a new quasi-3D shear deformation theory based on physical neutral surface", Compos. Part B: Eng., 108, 174-189. http://dx.doi.org/10.1016/j.compositesb.2016.09.029.
- Fekrar, A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2014), "A new five-unknown refined theory based on neutral surface position for bending analysis of exponential graded plates", Meccanica, 49(4), 795-810. http://dx.doi.org/10.1007/s11012-013-9827-3.
- Feng, H., Shen, D. and Tahouneh, V. (2020), "Vibration analysis of sandwich sector plate with porous core and functionally graded wavy carbon nanotube-reinforced layers", Steel Compos. Struct., 37(6), 711-731. http://dx.doi.org/10.12989/scs.2020.37.6.711.
- Ferreira, A.J.M., Batra, R.C., Roque, C.M.C., Qian, L.F. and Martins, P.A.L.S. (2005), "Static analysis of functionally graded plates using third-order shear deformation theory and a meshless method", Compos. Struct., 69(4), 449-457. https://doi.org/10.1016/j.compstruct.2004.08.003.
- Ferreira, A.J.M., Batra, R.C., Roque, C.M.C., Qian, L.F. and Jorge, R.M.N. (2006), "Natural frequencies of functionally graded plates by a meshless method", Compos. Struct., 75(1-4), 593-600. https://doi.org/10.1016/j.compstruct.2006.04.018.
- Gafour, Y., Hamidi, A., Benahmed, A., Zidour, M. and Bensattalah, T. (2020), "Porosity-dependent free vibration analysis of FG nanobeam using non-local shear deformation and energy principle", Adv. Nano Res., 8(1), 37-47. https://doi.org/10.12989/anr.2020.8.1.037.
- Ghandourh, E.E. and Abdraboh, A.M. (2020), "Dynamic analysis of functionally graded nonlocal nanobeam with different porosity models", Steel Compos. Struct., 36(3), 293-305. https://doi.org/10.12989/scs.2020.36.3.293.
- Ghannadpour, S.A.M. and. Mehrparvar, M. (2020), "Modeling and evaluation of rectangular hole effect on nonlinear behavior of imperfect composite plates by an effective simulation technique", Compos. Mater. Eng., 2(1), 25-41. https://doi.org/10.12989/cme.2020.2.1.025.
- Hadji, L. (2020), "Influence of the distribution shape of porosity on the bending of FGM beam using a new higher order shear deformation model", Smart Struct. Syst., 26(2), 253-262. https://doi.org/10.12989/sss.2020.26.2.253.
- Hadji, L., Zouatnia, N. and Bernard, F. (2019), "An analytical solution for bending and free vibration responses of functionally graded beams with porosities: Effect of the micromechanical models", Struct. Eng. Mech., 69(2), 231-241. https://doi.org/10.12989/sem.2019.69.2.231.
- Hadji, L. and Avcar, M. (2021), "Free Vibration Analysis of FG Porous Sandwich Plates under Various Boundary Conditions", J. Appl. Comput. Mech., 1-15. https://doi.org/10.22055/JACM.2020.35328.2628.
- Hamed, M.A., Mohamed, S.A. and Eltaher, M.A, (2020), "Buckling analysis of sandwich beam rested on elastic foundation and subjected to varying axial in-plane loads", Steel Compos. Struct., 34(1), 75-89. https://doi.org/10.12989/scs.2020.34.1.075.
- He, X.Q., Ng, T.Y., Sivashanker, S. and Liew, K.M. (2001), "Active control of FGM plates with integrated piezoelectric sensors and actuators", Int. J. Solid. Struct., 38(9), 1641-1655. https://doi.org/10.1016/s0020-7683(00)00050-0.
- Hosseini-Hashemi, S., Fadaee, M. and Atashipour, S.R. (2011), "A new exact analytical approach for free vibration of Reissner-Mindlin functionally graded rectangular plates", Int. J. Mech. Sci., 53(1), 11-22. https://doi.org/10.1016/j.ijmecsci.2010.10.002.
- Hosseini-Hashemi, S., Rokni Damavandi Taher, H., Akhavan, H. and Omidi, M. (2010), "Free vibration of functionally graded rectangular plates using first-order shear deformation plate theory". Appl. Math. Model., 34(5), 1276-1291. https://doi.org/10.1016/j.apm.2009.08.008.
- Jalaei, M. and Civalek, O. (2019), "On dynamic instability of magnetically embedded visco elastic porous FG nanobeam", Int. J. Eng. Sci., 143, 14-32, 2019. https://doi.org/10.1016/j.ijengsci.2019.06.013.
- Kiani, Y. (2016), "Free vibration of carbon nanotube reinforced composite plate on point Supports using Lagrangian multipliers", Meccanica., 52(6), 1353-1367. https://doi.org/10.1007/s11012-016-0466-3.
- Kiani, Y. (2017a), "Analysis of FG-CNT reinforced composite conical panel subjected to moving load using Ritz method", Thin-Wall. Struct., 119, 47-57. https://doi.org/10.1016/j.tws.2017.05.031.
- Kiani, Y. (2017b), "Thermal buckling of temperature-dependent FG-CNT-reinforced composite skew plates", J. Therm. Stresses., 40(11), 1442-1460. https://doi.org/10.1080/01495739.2017.1336742.
- Kiani, Y. (2018), "Thermal post-buckling of temperature dependent sandwich plates with FG-CNTRC face sheets", J. Therm. Stresses., 41(7), 866-882. https://doi.org/10.1080/01495739.2018.1425645.
- Kiani, Y. (2019), "NURBS-based thermal buckling analysis of graphene platelet reinforced composite laminated skew plates", J. Therm. Stresses, 1-19. https://doi.org/10.1080/01495739.2019.1673687.
- Kiani, Y. and Mirzaei, M. (2018), "Rectangular and skew shear buckling of FG-CNT reinforced composite skew plates using Ritz method", Aerosp. Sci. Technol., 77, 388-398. https://doi.org/10.1016/j.ast.2018.03.022.
- Kiani, Y., Dimitri, R. and Tornabene, F. (2018), "Free vibration study of composite conical panels reinforced with FG-CNTs", Eng. Struct., 172, 472-482. https://doi.org/10.1016/j.engstruct.2018.06.006.
- Kim, N.I. and Lee, J. (2016), "Geometrically nonlinear isogeometric analysis of functionally graded plates based on first-order shear deformation theory considering physical neutral surface", Compos. Struct., 153, 804-814. https://doi.org/10.1016/j.compstruct.2016.07.002.
- Koizumi, M. (1997), "FGM activities in Japan", Compos. Part B: Eng., 28(1-2), 1-4. https://doi.org/10.1016/s1359-8368(96)00016-9.
- Madenci, E. (2019), "A refined functional and mixed formulation to static analyses of fgm beams", Struct. Eng. Mech., 69(4), 427-437. https://doi.org/10.12989/sem.2019.69.4.427.
- Mehar, K. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., 7(3), 181-190. https://doi.org/10.12989/anr.2019.7.3.181.
- Mehar, K., Panda, S.K. and Mahapatra, T.R. (2017), "Thermoelastic nonlinear frequency analysis of CNT reinforced functionally graded sandwich structure", Eur. J. Mech. - A/Solids, 65, 384-396. https://doi.org/10.1016/j.euromechsol.2017.05.005.
- Merzoug, M., Bourada, M., Sekkal, M., Ali Chaibdra, A., Belmokhtar, C., Benyoucef, S. and Benachour, A. (2020), "2D and quasi 3D computational models for thermoelastic bending of FG beams on variable elastic foundation: Effect of the micromechanical models", Geomech. Eng., 22(4), 361-374. https://doi.org/10.12989/gae.2020.22.4.361
- Morimoto, T., Tanigawa, Y. and Kawamura, R. (2006), "Thermal buckling of functionally graded rectangular plates subjected to partial heating", Int. J. Mech. Sci., 48(9), 926-937. https://doi.org/10.1016/j.ijmecsci.2006.03.015.
- Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Cinefra, M., Jorge, R. M.N. and Soares, C.M.M. (2012), "Buckling analysis of sandwich plates with functionally graded skins using a new quasi-3D hyperbolic sine shear deformation theory and collocation with radial basis functions", ZAMM - J. Appl. Math. Mech. / Zeitschrift Fur Angewandte Mathematik Und Mechanik, 92(9), 749-766. https://doi.org/10.1002/zamm.201100186.
- Nguyen, T.K., Sab, K. and Bonnet, G. (2008), « First-order shear deformation plate models for functionally graded materials", Compos. Struct., 83(1), 25-36. https://doi.org/10.1016/j.compstruct.2007.03.004.
- Phuong, N.T.B., Tu, T.M., Phuong, H.T. and Van Long, N. (2019), "Bending analysis of functionally graded beam with porosities resting on elastic foundation based on neutral surface position", J. Sci. Technol. Civil Eng. (STCE)-NUCE, 13(1), 33-45. https://doi.org/10.31814/stce.nuce2019-13(1)-04.
- Pradhan, K.K. and Chakraverty, S. (2015), "Free vibration of functionally graded thin elliptic plates with various edge supports", Struct. Eng. Mech., 53(2), 337-354. https://doi.org/10.12989/SEM.2015.53.2.337.
- Pradyumna, S. and Bandyopadhyay, J.N. (2008), "Free vibration analysis of functionally graded curved panels using a higher-order finite element formulation", J. Sound Vib., 318(1-2), 176-192. https://doi.org/10.1016/j.jsv.2008.03.056.
- Qian, L.F., Batra, R.C. and Chen, L.M. (2004), "Static and dynamic deformations of thick functionally graded elastic plates by using higher-order shear and normal deformable plate theory and meshless local Petrov-Galerkin method", Compos. Part B: Eng., 35(6-8), 685-697. https://doi.org/10.1016/j.compositesb.2004.02.004.
- Rachedi, M.A., Benyoucef, S., Bouhadra, A., Bachir Bouiadjra, R., Sekkal, M. and Benachour, A. (2020), "Impact of the homogenization models on the thermoelastic response of FG plates on variable elastic foundation", Geomech. Eng., 22(1), 65-80. https://doi.org/10.12989/gae.2020.22.1.065.
- Reddy, J.N. (2000), "Analysis of functionally graded plates", Int. J. Numer. Method. Eng., 47(1-3), 663-684. https://doi.org/10.1002/(sici)1097-0207(20000110/30)47:1/3<663::aid-nme787>3.0.co;2-8.
- Saadatfar, M. and Zarandi, M.H. (2020), "Effect of an gular acceleration on the mechanical behavior of an exponentially graded piezoelectric rotating annular plate with variable thickness", Mech. Based Des. Struct. Mach., https://doi.org/10.1080/15397734.2020.1751198.
- Safa, A., Hadji, L., Bourada, M. and Zouatnia, N., (2019), "Thermal vibration analysis of FGM beams Using an efficient shear deformation beam theory", Earthq. Struct., 17(3), 329-336. https://doi.org/10.12989/eas.2019.17.3.329.
- Sahouane, A., Hadji, L. and Bourada, M., (2019), "Numerical analysis for free vibration of functionally graded beams using an original HSDBT", Earthq. Struct., 17(1), 31-37. https://doi.org/10.12989/eas.2019.17.1.031.
- Selmi, A. (2020), "Exact solution for nonlinear vibration of clamped-clamped functionally graded buckled beam". Smart Struct. Syst., 26(3), 361-371. https://doi.org/10.12989/SSS.2020.26.3.361.
- Shabana, Y.M., Elsawaf, A., Khalaf, H. and Khalil, Y. (2017), "Stresses minimization in functionally graded cylinders using particle swarm optimization technique", Int. J. Press. Vess. Piping., 154, 1-10. https://doi.org/10.1016/j.ijpvp.2017.05.013.
- Shahsavari, D., Karami, B., Fahham, H.R. and Li, L. (2018a), "On the shear buckling of porous nanoplates using a new size-dependent quasi-3D shear deformation theory", Acta Mechanica. https://doi.org/10.1007/s00707-018-2247-7.
- Shahsavari, D., Shahsavari, M., Li, L. and Karami, B. (2018b), "A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation", Aerosp. Sci. Technol., 72, 134-149. https://doi.org/10.1016/j.ast.2017.11.004.
- She, G.L. (2020), "Wave propagation of FG polymer composite nanoplates reinforced with GNPs", Steel Compos. Struct., 37(1), 27-35. https://doi.org/10.12989/scs.2020.37.1.027 27.
- She, G.L., Liu, H.B. and Karami, B. (2021), "Resonance analysis of composite curved microbeams reinforced with graphene nanoplatelets", Thin-Wall. Struct., 160, 107407. https://doi.org/10.1016/j.tws.2020.107407.
- Tanzadeh, H. and Amoushahi, H. (2020), "Analysis of laminated composite plates based on different shear deformation plate theories", Struct. Eng. Mech., 75(2), 247-269. http://dx.doi.org/10.12989/sem.2020.75.2.247.
- Tayeb, T.S., Zidour, M., Bensattalah, T., Heireche, H., Benahmed, A. and Bedia, E.A. (2020), "Mechanical buckling of FG-CNTs reinforced composite plate with parabolic distribution using Hamilton's energy principle", Adv. Nano Res., 8(2), 135-148. https://doi.org/10.12989/anr.2020.8.2.135.
- Thai, H.T. and Kim, S.E. (2013), "A simple quasi-3D sinusoidal shear deformation theory for functionally graded plates", Compos. Struct., 99, 172-180. https://doi.org/10.1016/j.compstruct.2012.11.030.
- Timesli, A. (2020), "Prediction of the critical buckling load of SWCNT reinforced concrete cylindrical shell embedded in an elastic foundation", Comput. Concrete., 26(1), 53-62. https://doi.org/10.12989/cac.2020.26.1.053.
- Vinyas, M. (2020), "On frequency response of porous functionally graded magneto-electro-elastic circular and annular plates with different electro-magnetic conditions using HSDT", Compos. Struct., 240, 112044. https://doi.org/10.1016/j.compstruct.2020.112044.
- Woo, J., Meguid, S.A. and Ong, L.S. (2006), "Nonlinear free vibration behavior of functionally graded plates", J. Sound Vib., 289(3), 595-611. https://doi.org/10.1016/j.jsv.2005.02.031.
- Xiang, S., Jin, Y., Bi, Z., Jiang, S. and Yang, M. (2011), "A n-order shear deformation theory for free vibration of functionally graded and composite sandwich plates", Compos. Struct., 93(11), 2826-2832. https://doi.org/10.1016/j.compstruct.2011.05.022.
- Yaylaci, M. and Avcar, M. (2020), "Finite element modeling of contact between an elastic layer and two elastic quarter planes", Comput. Concrete, 26(2), 107-114. https://doi.org/10.12989/cac.2020.26.2.107.
- Zenkour, A.M. (2007), "Benchmark trigonometric and 3-D elasticity solutions for an exponentially graded thick rectangular plate", Arch. Appl. Mech., 77(4), 197-214. https://doi.org/10.1007/s00419-006-0084-y.
- Zhang, D.G. and Zhou, Y.H. (2008), "A theoretical analysis of FGM thin plates based on physical neutral surface", Comput. Mater. Sci., 44(2), 716-720. https://doi.org/10.1016/j.commatsci.2008.05.016.
- Zhang, D.G. and Zhou, Y.H. (2008), "A theoretical analysis of FGM thin plates based on physical neutral surface", Comput. Mater. Sci., 44(2), 716-720. https://doi.org/10.1016/j.commatsci.2008.05.016.
- Zhao, X., Lee, Y.Y. and Liew, K.M. (2009), "Free vibration analysis of functionally graded plates using the element-free kp-Ritz method", J. Sound Vib., 319(3-5), 918-939. https://doi.org/10.1016/j.jsv.2008.06.025.
피인용 문헌
- Free Vibration of Composite Cylindrical Shells Based on Third-Order Shear Deformation Theory vol.2021, 2021, https://doi.org/10.1155/2021/3792164
- Finite Element Modeling of Stress Behavior of FGM Nanoplates vol.2021, 2021, https://doi.org/10.1155/2021/9983024