참고문헌
- Addou, F.Y., Meradjah, M., Bousahla, A.A., Benachour, A., Bourada, F., Tounsi, A. and Mahmoud, S. (2019), "Influences of porosity on dynamic response of FG plates resting on Winkler/Pasternak/Kerr foundation using quasi 3D HSDT", Comput. Concrete, 24(4), 347-367. http://dx.doi.org/10.12989/cac.2019.24.4.347.
- Akbarzadeh, A., Abedini, A. and Chen, Z. (2015), "Effect of micromechanical models on structural responses of functionally graded plates", Compos. Struct., 119, 598-609. https://doi.org/10.1016/j.compstruct.2014.09.031.
- Akbas, S.D. (2017), "Thermal effects on the vibration of functionally graded deep beams with porosity", Int. J. Appl. Mech., 9(5), 1750076. https://doi.org/10.1142/S1758825117500764.
- Akbas, S.D. (2018), "Forced vibration analysis of functionally graded porous deep beams", Compos. Struct., 186, 293-302. https://doi.org/10.1016/j.compstruct.2017.12.013.
- Al Rjoub, Y.S. and Hamad, A.G. (2017), "Free vibration of functionally Euler-Bernoulli and Timoshenko graded porous beams using the transfer matrix method", KSCE J. Civil Eng., 21(3), 792-806. https://doi.org/10.1155/2017/8186976.
- Allahkarami, F., Nikkhah-Bahrami, M. and Saryazdi, M.G. (2018), "Nonlinear forced vibration of FG-CNTs-reinforced curved microbeam based on strain gradient theory considering out-ofplane motion", Steel Compos. Struct., 26(6), 673-691. https://doi.org/10.12989/scs.2018.26.6.673.
- Amir, M. and Talha, M. (2018), "Thermoelastic vibration of shear deformable functionally graded curved beams with microstructural defects", Int. J. Struct. Stab. Dynam., 18(11), 1850135. https://doi.org/10.1142/S0219455418501353.
- Amir, M. and Talha, M. (2019a), "Imperfection sensitivity in the vibration behavior of functionally graded arches by considering microstructural defects", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(8), 2763-2777. https://doi.org/10.1177/0954406218792584.
- Amir, M. and Talha, M. (2019b), "Nonlinear vibration characteristics of shear deformable functionally graded curved panels with porosity including temperature effects", Int. J. Pressure Vess. Piping, 172, 28-41. https://doi.org/10.1016/j.ijpvp.2019.03.008.
- Arefi, M. and Zenkour, A.M. (2018), "Thermal stress and deformation analysis of a size-dependent curved nanobeam based on sinusoidal shear deformation theory", Alexandria Eng. J., 57(3), 2177-2185. https://doi.org/10.1016/j.aej.2017.07.003.
- Atmane, H.A., Tounsi, A. and Bernard, F. (2017), "Effect of thickness stretching and porosity on mechanical response of a functionally graded beams resting on elastic foundations", Int. J. Mech. Mater. Des., 13(1), 71-84. https://doi.org/10.1007/s10999-015-9318-x
- Bedia, W.A., Houari, M.S.A., Bessaim, A., Bousahla, A.A., Tounsi, A., Saeed, T. and Alhodaly, M.S. (2019), "A new hyperbolic two-unknown beam model for bending and buckling analysis of a nonlocal strain gradient nanobeams", J. Nano Res., 57, 175-191. https://doi.org/10.4028/www.scientific.net/JNanoR.57.175.
- Berghouti, H., Adda Bedia, E., Benkhedda, A. and Tounsi, A. (2019), "Vibration analysis of nonlocal porous nanobeams made of functionally graded material", Adv. Nano Res., 7(5), 351-364. https://doi.org/10.12989/anr.2019.7.5.351
- Beg, M.S., Yasin, M.Y. and Khalid, H.M. (2018), "Analysis of laminated and FGM beams using various theories", IOP Conference Series: Materials Science and Engineering, Vol. 404. IOP Publishing, p. 012030. https://doi.org/10.1088/1757-899X/404/1/012030
- Bhattacharyya, M., Kapuria, S. and Kumar, A. (2007), "On the stress to strain transfer ratio and elastic deflection behavior for Al/SiC functionally graded material", Mech. Adv. Mater. Struct., 14(4), 295-302. https://doi.org/10.1080/15376490600817917.
- Birman, V. and Byrd, L.W. (2007), "Modeling and analysis of functionally graded materials and structures", Appl. Mech. Review., 60(5), 195-216. https://doi.org/10.1115/1.2777164.
- Boukhlif, Z., Bouremana, M., Bourada, F., Bousahla, A.A., Bourada, M., Tounsi, A. and Al-Osta, M.A. (2019), "A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation", Steel Compos.Struct., 31(5), 503-516. http://dx.doi.org/10.12989/scs.2019.31.5.503.
- Bourada, F., Bousahla, A.A., Bourada, M., Azzaz, A., Zinata, A. and Tounsi, A. (2019), "Dynamic investigation of porous functionally graded beam using a sinusoidal shear deformation theory", Wind Struct., 28(1), 19-30. http://dx.doi.org/10.12989/was.2019.28.1.019
- Boutaleb, S., Benrahou, K.H., Bakora, A., Algarni, A., Bousahla, A.A., Tounsi, A., Tounsi, A. and Mahmoud, S. (2019), "Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT", Adv. Nano Res., 7(3), 189-206. http://dx.doi.org/10.12989/anr.2019.7.3.191.
- Bouremana, M., Houari, M.S.A., Tounsi, A., Kaci, A., and Bedia, E.A.A. (2013), "A new first shear deformation beam theory based on neutral surface position for functionally graded beams", Steel Composi. Struct., 15(5), 467-479. https://doi.org/10.12989/scs.2013.15.5.467.
- Chaabane, L.A., Bourada, F., Sekkal, M., Zerouati, S., Zaoui, F. Z., Tounsi, A., Derras, A., Bousahla, A.A. and Tounsi, A. (2019), "Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation", Struct. Eng. Mech., 71(2), 185-196. http://dx.doi.org/10.12989/sem.2019.71.2.185.
- Chen, D., Yang, J. and Kitipornchai, S. (2015), "Elastic buckling and static bending of shear deformable functionally graded porous beam", Compos. Struct., 133, 54-61. https://doi.org/10.1016/j.compstruct.2015.07.052.
- Chen, D., Yang, J. and Kitipornchai, S. (2016), "Free and forced vibrations of shear deformable functionally graded porous beams", Int. J. Mech. Sci., 108, 14-22. https://doi.org/10.1016/j.ijmecsci.2016.01.025.
- Chen, D., Yang, J. and Kitipornchai, S. (2017), "Nonlinear vibration and postbuckling of functionally graded graphene reinforced porous nanocomposite beams", Compos. Sci. Technol., 142, 235-245. https://doi.org/10.1016/j.compscitech.2017.02.008.
- Cho, J. and Ha, D. (2001), "Averaging and finite element discretization approaches in the numerical analysis of functionally graded materials", Mater. Sci. Eng. A, 302(2), 187-196. https://doi.org/10.1016/S0921-5093(00)01835-9.
- Ebrahimi, F. and Daman, M. (2017), "Dynamic characteristics of curved inhomogeneous nonlocal porous beams in thermal environment", Struct. Eng. Mech., 64(1), 121-133. https://doi.org/10.12989/sem.2017.64.1.121.
- Ebrahimi, F. and Jafari, A. (2016), "A higher-order thermomechanical vibration analysis of temperature-dependent FGM beams with porosities", J. Eng., Article ID 9561504. http://dx.doi.org/10.1155/2016/9561504.
- Ebrahimi, F. and Jafari, A. (2018), "A four-variable refined shear-deformation beam theory for thermo-mechanical vibration analysis of temperature-dependent FGM beams with porosities", Mech. Adv. Mater. Struct., 25(3), 212-224. https://doi.org/10.1080/15376494.2016.1255820
- Ebrahimi, F. and Mokhtari, M. (2015), "Transverse vibration analysis of rotating porous beam with functionally graded microstructure using the differential transform method", J. Braz. Soc. Mech. Sci. Eng., 37(4), 1435-1444. https://doi.org/10.1007/s40430-014-0255-7.
- Eltaher, M., Fouda, N., El-midany, T. and Sadoun, A. (2018), "Modified porosity model in analysis of functionally graded porous nanobeams", J. Braz. Soc. Mech. Sci. Eng., 40(3), 141. https://doi.org/10.1007/s40430-018-1065-0
- Fahsi, B., Bouiadjra, R.B., Mahmoudi, A., Benyoucef, S. and Tounsi, A. (2019), "Assessing the effects of porosity on the bending, buckling, and vibrations of functionally graded beams resting on an elastic foundation by using a new refined quasi-3D theory", Mech. Compos. Mater., 55(2), 1-12. https://doi.org/10.1007/s11029-019-09805-0
- Fang, W., Yu, T., Van Lich, L. and Bui, T. Q. (2019), "Analysis of thick porous beams by a quasi-3D theory and isogeometric analysis", Compos. Struct., 221, 110890. https://doi.org/10.1016/j.compstruct.2019.04.062.
- Fazzolari, F.A. (2018), "Generalized exponential, polynomial and trigonometric theories for vibration and stability analysis of porous FG sandwich beams resting on elastic foundations", Compos. Part B: Eng., 136, 254-271. https://doi.org/10.1016/j.compositesb.2017.10.022.
- Fereidoon, A., Andalib, M. and Hemmatian, H. (2015), "Bending analysis of curved sandwich beams with functionally graded core", Mech. Adv. Mater. Struct., 22(7), 564-577. https://doi.org/10.1080/15376494.2013.828815.
- Filipich, C.P. and Piovan, M.T. (2010), "The dynamics of thick curved beams constructed with functionally graded materials", Mech. Res. Commun., 37(6), 565-570. https://doi.org/10.1016/j.mechrescom.2010.07.007.
- Gasik, M.M. (1998), "Micromechanical modelling of functionally graded materials", Comput. Mater. Sci., 13(1-3), 42-55. https://doi.org/10.1016/S0927-0256(98)00044-5.
- Hadji, L., Zouatnia, N. and Bernard, F. (2019), "An analytical solution for bending and free vibration responses of functionally graded beams with porosities: Effect of the micromechanical models", Struct. Eng. Mech., 69(2), 231-241. https://doi.org/10.12989/sem.2019.69.2.231.
- Hajianmaleki, M. and Qatu, M. S. (2012), "Static and vibration analyses of thick, generally laminated deep curved beams with different boundary conditions", Compos. Part B: Eng., 43(4), 1767-1775. https://doi.org/10.1016/j.compositesb.2012.01.019.
- Haskul, M. (2020), "Elastic state of functionally graded curved beam on the plane stress state subject to thermal load", Mech. Based Des. Struct. Machines, 48(6), 739-754. https://doi.org/10.1080/15397734.2019.1660890
- Hosseini, S. and Rahmani, O. (2016), "Free vibration of shallow and deep curved FG nanobeam via nonlocal Timoshenko curved beam model", Appl. Phys. A, 122(3), 169. https://doi.org/10.1007/s00339-016-9696-4.
- Huynh, T.A., Luu, A.T. and Lee, J. (2017), "Bending, buckling and free vibration analyses of functionally graded curved beams with variable curvatures using isogeometric approach", Meccanica, 52(11-12), 2527-2546. https://doi.org/10.1007/s11012-016-0603-z.
- Javani, M., Kiani, Y. and Eslami, M. (2019), "Free vibration of arbitrary thick FGM deep arches using unconstrained higherorder shear deformation theory", Thin-Wall. Struct., 136, 258-266. https://doi.org/10.1016/j.tws.2018.12.020.
- Jha, D., Kant, T. and Singh, R. (2013), "A critical review of recent research on functionally graded plates", Compos. Struct., 96, 833-849. https://doi.org/10.1016/j.compstruct.2012.09.001.
- Kaddari, M., Kaci, A., Bousahla, A.A., Tounsi, A., Bourada, F., Tounsi, A., Bedia, E. and Al-Osta, M.A. (2020), "A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: bending and free vibration analysis", Comput. Concrete, 25(1), 37-57. http://dx.doi.org/10.12989/cac.2020.25.1.037.
- Kapuria, S., Bhattacharyya, M. and Kumar, A. (2008a), "Bending and free vibration response of layered functionally graded beams: A theoretical model and its experimental validation", Compos. Struct., 82(3), 390-402. https://doi.org/10.1016/j.compstruct.2007.01.019
- Kapuria, S., Bhattacharyya, M. and Kumar, A. (2008b), "Theoretical modeling and experimental validation of thermal response of metal-ceramic functionally graded beams", J. Therm. Stresses, 31(8), 759-787. https://doi.org/10.1016/j.compstruct.2007.01.019.
- Kapuria, S., Patni, M. and Yasin, M.Y. (2015), "A quadrilateral shallow shell element based on the third-order theory for functionally graded plates and shells and the inaccuracy of rule of mixtures", Eur. J. Mech.-A/Solids, 49, 268-282. https://doi.org/10.1016/j.euromechsol.2014.06.010.
- Karami, B., Shahsavari, D., Janghorban, M. and Li, L. (2019), "Influence of homogenization schemes on vibration of functionally graded curved microbeams", Compos. Struct., 216, 67-79. https://doi.org/10.1016/j.compstruct.2019.02.089.
- Karami, B., Janghorban, M. and Tounsi, A. (2019a), "Galerkin's approach for buckling analysis of functionally graded anisotropic nanoplates/different boundary conditions", Eng. with Comput., 35(4), 1297-1316. http://dx.doi.org/10.1007/s00366-018-0664-9.
- Karami, B., Janghorban, M. and Tounsi, A. (2019d), "Wave propagation of functionally graded anisotropic nanoplates resting on Winkler-Pasternak foundation", Struct. Eng. Mech., 70(1), 55-66. http://dx.doi.org/10.12989/sem.2019.70.1.055.
- Kendall, K., Howard, A.J. and Birchall, D.J. (1983), "The relation between porosity, microstructure and strength, and the approach to advanced cement-based materials", Philos. T. Roy. Soc. London. Series A, Math. Phys. Sci., 310(1511), 139-153. https://doi.org/10.1098/rsta.1983.0073.
- Khan, M.A., Yasin, M., Beg, M.S. and Khan, A. (2020), "Free and forced vibration analysis of functionally graded beams using finite element model based on refined third-order theory", Emerging Trends in Mechanical Engineering, 603-612. https://doi.org/10.1007/978-981-32-9931-3
- Khiloun, M., Bousahla, A.A., Kaci, A., Bessaim, A., Tounsi, A. and Mahmoud, S. (2020), "Analytical modeling of bending and vibration of thick advanced composite plates using a fourvariable quasi 3D HSDT", Eng. with Comput., 36(3), 807-821. https://doi.org/10.1007/s00366-019-00732-1.
- Kurtaran, H. (2015), "Large displacement static and transient analysis of functionally graded deep curved beams with generalized differential quadrature method", Compos. Struct., 131, 821-831. https://doi.org/10.1016/j.compstruct.2015.06.024.
- Levinson, M. (1981), "A new rectangular beam theory", J. Sound Vib., 74(1), 81-87. https://doi.org/10.1016/0022-460X(81)90493-4.
- Lim, C.W., Yang, Q. and Lu, C.F. (2009), "Two-dimensional elasticity solutions for temperature-dependent in-plane vibration of FGM circular arches", Compos. Struct., 90, 323-329. https://doi.org/10.1016/j.compstruct.2009.03.014.
- Malekzadeh, P. (2009), "Two-dimensional in-plane free vibrations of functionally graded circular arches with temperaturedependent properties", Compos. Struct., 91(1), 38-47. https://doi.org/10.1016/j.compstruct.2009.04.034.
- Malekzadeh, P., Atashi, M. and Karami, G. (2009), "In-plane free vibration of functionally graded circular arches with temperature-dependent properties under thermal environment", J. Sound Vib., 326, 837-851. https://doi.org/10.1016/j.jsv.2009.05.016.
- Medani, M., Benahmed, A., Zidour, M., Heireche, H., Tounsi, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S. (2019), "Static and dynamic behavior of (FG-CNT) reinforced porous sandwich plate using energy principle", Steel Compos. Struct., 32(5), 595-610. http://dx.doi.org/10.12989/scs.2019.32.5.595.
- Meksi, R., Benyoucef, S., Mahmoudi, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S. (2019), "An analytical solution for bending, buckling and vibration responses of FGM sandwich plates", J. Sandw. Struct. Mater., 21(2), 727-757. https://doi.org/10.1177/1099636217698443.
- Nguyen, D.K. and Tran, T.T. (2018), "Free vibration of tapered BFGM beams using an efficient shear deformable finite element model", Steel Compos. Struct., 29(3), 363-377. https://doi.org/10.12989/scs.2018.29.3.363.
- Piovan, M.T., Domini, S. and Ramirez, J. M. (2012), "In-plane and out-of-plane dynamics and buckling of functionally graded circular curved beams", Compos. Struct., 94(11), 3194-3206. https://doi.org/10.1016/j.compstruct.2012.04.032.
- Polit, O., Anant, C., Anirudh, B. and Ganapathi, M. (2019), "Functionally graded graphene reinforced porous nanocomposite curved beams: Bending and elastic stability using a higher-order model with thickness stretch effect", Compos. Part B: Eng., 166, 310-327. https://doi.org/10.1016/j.compositesb.2018.11.074.
- Pydah, A. and Batra, R. (2017), "Shear deformation theory using logarithmic function for thick circular beams and analytical solution for bi-directional functionally graded circular beams", Compos. Struct., 172, 45-60. https://doi.org/10.1016/j.compstruct.2017.03.072.
- Rahmani, O., Hosseini, S., Ghoytasi, I. and Golmohammadi, H. (2018), "Free vibration of deep curved FG nano-beam based on modified couple stress theory", Steel Compos. Struct., 26(5), 607-620. https://doi.org/10.12989/scs.2018.26.5.607.
- Reiter, T. and Dvorak, G. J. (1998), "Micromechanical models for graded composite materials: II. thermomechanical loading", J. Mech. Phys. Solid., 46(9), 1655-1673. https://doi.org/10.1016/S0022-5096(97)00039-2.
- Reiter, T., Dvorak, G.J. and Tvergaard, V. (1997), "Micromechanical models for graded composite materials", J. Mech. Phys. Solid., 45(8), 1281-1302. https://doi.org/10.1016/S0022-5096(97)00007-0.
- Sayyad, A.S. and Ghugal, Y.M. (2018), "Modeling and analysis of functionally graded sandwich beams: A review", Mech. Adv. Mater. Struct., 26(21), 1-20. https://doi.org/10.1080/15376494.2018.1447178.
- Sayyad, A.S. and Ghugal, Y.M. (2019), "A sinusoidal beam theory for functionally graded sandwich curved beams", Compos. Struct., 226, 111246. https://doi.org/10.1016/j.compstruct.2019.111246.
- Semmah, A., Heireche, H., Bousahla, A.A. and Tounsi, A. (2019), "Thermal buckling analysis of SWBNNT on Winkler foundation by non local FSDT", Adv. Nano Res., 7(2), 89-98. http://dx.doi.org/10.12989/anr.2019.7.2.089.
- Teraki, J., Hirano, T. and Wakashima, K. (1993), "Elastic-plastic analysis of thermal stresses in an FGM plate under cyclic thermal load", Ceramic Transactions, 34, 67-74.
- Tlidji, Y., Zidour, M., Draiche, K., Safa, A., Bourada, M., Tounsi, A., Bousahla, A.A. and Mahmoud, S. (2019), "Vibration analysis of different material distributions of functionally graded microbeam", Struct. Eng. Mech., 69(6), 637-649. http://dx.doi.org/10.12989/sem.2019.69.6.637.
- Tufekci, E., Eroglu, U. and Aya, S.A. (2016), "Exact solution for in-plane static problems of circular beams made of functionally graded materials", Mech. Based Des. Struct. Machines, 44(4), 476-494. https://doi.org/10.1080/15397734.2015.1121398.
- Vel, S.S. and Batra, R. (2004), "Three-dimensional exact solution for the vibration of functionally graded rectangular plates", J. Sound Vib., 272(3-5), 703-730. https://doi.org/10.1016/S0022-460X(03)00412-7.
- Wakashima, K. and Tsukamoto, H. (1991), "Mean-field micromechanics model and its application to the analysis of thermomechanical behaviour of composite materials", Mater. Sci. Eng: A, 146(1-2), 291-316. https://doi.org/10.1016/0921-5093(91)90284-T.
- Wattanasakulpong, N. and Chaikittiratana, A. (2015), "Flexural vibration of imperfect functionally graded beams based on Timoshenko beam theory: Chebyshev collocation method", Meccanica, 50(5), 1331-1342. https://doi.org/10.1007/s11012-014-0094-8
- Wattanasakulpong, N., Chaikittiratana, A. and Pornpeerakeat, S. (2018), "Chebyshev collocation approach for vibration analysis of functionally graded porous beams based on third-order shear deformation theory", Acta Mechanica Sinica, 34(6), 1124-1135. https://doi.org/10.1007/s10409-018-0770-3.
- Wattanasakulpong, N., Prusty, B.G., Kelly, D.W. and Hoffman, M. (2012), "Free vibration analysis of layered functionally graded beams with experimental validation", Mater. Design, 36, 182-190. https://doi.org/10.1016/j.matdes.2011.10.049.
- Wattanasakulpong, N. and Ungbhakorn, V. (2014), "Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities", Aerosp. Sci. Technol., 32(1), 111-120. https://doi.org/10.1016/j.ast.2013.12.002.
- Wu, D., Liu, A., Huang, Y., Huang, Y., Pi, Y. and Gao, W. (2018), "Dynamic analysis of functionally graded porous structures through finite element analysis", Eng. Struct., 165, 287-301. https://doi.org/10.1016/j.engstruct.2018.03.023.
- Yasin, M.Y., Khalid, H.M. and Beg, M.S. (2020), "Exact solution considering layerwise mechanics for laminated composite and sandwich curved beams of deep curvatures", Compos. Struct., 244, 112258. https://doi.org/10.1016/j.compstruct.2020.112258.
- Yousefi, A. and Rastgoo, A. (2011), "Free vibration of functionally graded spatial curved beams", Compos. Struct., 93(11), 3048-3056. https://doi.org/10.1016/j.compstruct.2011.04.024.
- Zaoui, F.Z., Ouinas, D. and Tounsi, A. (2019), "New 2D and quasi-3D shear deformation theories for free vibration of functionally graded plates on elastic foundations", Compos. Part B: Eng., 159, 231-247. https://doi.org/10.1016/j.compositesb.2018.09.051.
- Zhang, C. and Wang, Q. (2018), "Free vibration analysis of elastically restrained functionally graded curved beams based on the Mori-Tanaka scheme", Mech. Adv. Mater. Struct., 26(21), 1821-1831. https://doi.org/10.1080/15376494.2018.1452318.
- Zhao, J., Wang, Q., Deng, X., Choe, K., Xie, F. and Shuai, C. (2019), "A modified series solution for free vibration analyses of moderately thick functionally graded porous (FGP) deep curved and straight beams", Compos. Part B: Eng., 165, 155-166. https://doi.org/10.1016/j.compositesb.2018.11.080.
- Zouatnia, N. and Hadji, L. (2019), "Effect of the micromechanical models on the bending of FGM beam using a new hyperbolic shear deformation theory", Earthq. Struct., 16(2), 177-183. https://doi.org/10.12989/eas.2019.16.2.177.