DOI QR코드

DOI QR Code

Hydro-mechanical coupling behaviors in the failure process of pre-cracked sandstone

  • Li, Tingchun (Shandong Key Laboratory of Civil Engineering Disaster Prevention and Mitigation, Shandong University of Science and Technology) ;
  • Du, Yiteng (Shandong Key Laboratory of Civil Engineering Disaster Prevention and Mitigation, Shandong University of Science and Technology) ;
  • Zhu, Qingwen (Shandong Key Laboratory of Civil Engineering Disaster Prevention and Mitigation, Shandong University of Science and Technology) ;
  • Ren, Yande (Radiology Department, The Affiliated Hospital of Qingdao University) ;
  • Zhang, Hao (Shandong Key Laboratory of Civil Engineering Disaster Prevention and Mitigation, Shandong University of Science and Technology) ;
  • Ran, Jinlin (Shandong Key Laboratory of Civil Engineering Disaster Prevention and Mitigation, Shandong University of Science and Technology)
  • 투고 : 2020.09.09
  • 심사 : 2021.03.18
  • 발행 : 2021.03.25

초록

The interaction of cracks and water significantly affects the fracture mechanism of rocks. In this study, laboratory tests were conducted using sandstone samples containing a single fissure to explore the hydro-mechanical behaviors in the failure process of pre-cracked rocks. The internal crack characteristics were also analyzed using X-ray CT scanning. The results show that the confining pressure has the greatest effect on the mechanical properties (e.g., strengths, elastic modulus, and Poisson's ratio), followed by the fissure inclination and water pressure. At a lower fissure inclination, the confining pressure may control the type main cracks that form, and an increase in the water pressure increases the number of anti-wing cracks and the length of wing cracks and branch cracks. However, the fracture behaviors of samples with a higher fissure inclination are only slightly affected by the confining pressures and water pressures. The effect of fissure inclination on the internal crack area is reduced with the propagation from the fissure tips to the sample ends. The fissure inclination mainly affects the value of permeability but not affect the trend. The impact of pre-existing fissure on permeability is smaller than that of confining pressure and water pressure.

키워드

참고문헌

  1. Alam, A.K.M.B., Niioka, M., Fujii, Y., Fukuda, D. and Kodama, J. (2014), "Effects of confining pressure on the permeability of three rock types under compression", Int. J. Rock Mech. Min. Sci., 65, 49-61. https://doi.org/10.1016/j.ijrmms.2013.11.006.
  2. Asadizadeh, M., Hossaini, M.F., Moosavi, M., Masoumi, H. and Ranjith, P.G. (2019), "Mechanical characterisation of jointed rock-like material with non-persistent rough joints subjected to uniaxial compression", Eng. Geol., 260, 105224. https://doi.org/10.1016/j.enggeo.2019.105224.
  3. Bastola, S. and Cai, M. (2019), "Investigation of mechanical properties and crack propagation in pre-cracked marbles using lattice-spring-based synthetic rock mass (LS-SRM) modeling approach", Comput. Geotech., 110, 28-43. https://doi.org/10.1016/j.compgeo.2019.02.009.
  4. Bewick, R.P., Kaiser, P.K. and Amann, F. (2019), "Strength of massive to moderately jointed hard rock masses", J. Rock Mech. Geotech. Eng., 11(3), 562-575. https://doi.org/10.1016/j.jrmge.2018.10.003.
  5. Bruning, T., Karakus, M., Nguyen, G.D. and Goodchild, D. (2018), "Experimental study on the damage evolution of brittle rock under triaxial confinement with full circumferential strain control", Rock Mech. Rock Eng., 51(11), 3321-3341. https://doi.org/10.1007/s00603-018-1537-7.
  6. Chen, M., Yang, S.Q., Ranjith, P.G., Yang, W.D., Yin, P.F., Zhang, Y.C. and Zhang, Q.Y. (2019), "Fracture processes of rock-like specimens containing nonpersistent fissures under uniaxial compression", Energies 12(1), 79. https://doi.org/10.3390/en12010079.
  7. Chen, X., Yu, J., Tang, C.A., Li, H. and Wang, S.Y. (2017a), "Experimental and numerical investigation of permeability evolution with damage of sandstone under triaxial compression", Rock Mech. Rock Eng. 50(6), 1529-1549. https://doi.org/10.1007/s00603-017-1169-3.
  8. Chen, S.W., Yang, C.H. and Wang, G.B. (2017b), "Evolution of thermal damage and permeability of Beishan granite", Appl. Therm. Eng., 110, 1533-1542. https://doi.org/10.1016/j.applthermaleng.2016.09.075.
  9. Crider, J.G. (2015), "The initiation of brittle faults in crystalline rock", J. Struct. Geol., 77, 159-174. https://doi.org/10.1016/j.jsg.2015.05.001.
  10. Davy, C.A., Skoczylas, F., Barnichon, J.D. and Lebon P. (2007), "Permeability of macro-cracked argillite under confinement: Gas and water testing", Phys. Chem. Earth., 32(8-14), 66-680. https://doi.org/10.1016/j.pce.2006.02.055.
  11. Du, Y.T., Li, T.C., Li, W.T., Ren, Y.D., Wang, G. and He, P. (2020), "Experimental study of mechanical and permeability behaviors during the failure of sandstone containing two preexisting fissures under triaxial compression", Rock Mech. Rock Eng., 53(8), 3673-3697. https://doi.org/10.1007/s00603-020-02119-x.
  12. Duriez, J., Scholtes, L. and Donze, F.V. (2016), "Micromechanics of wing crack propagation for different flaw properties", Eng. Fract. Mech., 153, 378-398. https://doi.org/10.1016/j.engfracmech.2015.12.034.
  13. Fu, J.W., Zhang, X.Z., Zhu, W.S., Chen, K. and Guan, J.F. (2017), "Simulating progressive failure in brittle jointed rock masses using a modified elastic-brittle model and the application", Eng. Fract. Mech., 178, 212-230. https://doi.org/10.1016/j.engfracmech.2017.04.037.
  14. Heiland, J. (2003), "Permeability of triaxially compressed sandstone: influence of deformation and strain-rate on permeability", Pure Appl. Geophys., 160(5-6), 889-908. https://doi.org/10.1007/PL00012571.
  15. Hu, J., Li, S.C., Liu, H.L., Li, L.P., Shi, S.S. and Qin, C.S. (2020), "New modified model for estimating the peak shear strength of rock mass containing nonconsecutive joint based on a simulated experiment", Int. J. Geomech., 20(7), 1-10. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001732.
  16. Huang, C.C., Yang, W.D., Duan, K., Fang, L.D., Wang, L. and Bo, C.J. (2019), "Mechanical behaviors of the brittle rock-like specimens with multi-non-persistent joints under uniaxial compression", Constr. Build. Mater., 220, 426-443. https://doi.org/10.1016/j.conbuildmat.2019.05.159.
  17. Huang, D., Gu, D.M., Yang, C., Huang, R.Q. and Fu, G.Y. (2016a), "Investigation on mechanical behaviors of sandstone with two preexisting flaws under triaxial compression", Rock Mech. Rock Eng., 49, 375-399. https://doi.org/10.1007/s00603-015-0757-3.
  18. Huang, Y.H., Yang S.Q. and Zhao, J. (2016b) "Three-dimensional numerical simulation on triaxial failure mechanical behavior of rock-like specimen containing two unparallel fissures", Rock Mech. Rock Eng., 49(12), 4711-4729. https://doi.org/10.1007/s00603-016-1081-2.
  19. Jin, J., Cao, P., Chen, Y., Pu, C.Z., Mao, D.W. and Fan, X. (2017), "Influence of single flaw on the failure process and energy mechanics of rock-like material", Comput. Geotech., 86, 150-162. https://doi.org/10.1016/j.compgeo.2017.01.011.
  20. Lee, H. and Jeon, S. (2011), "An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression", Int. J. Solids Struct., 48(6), 979-999. https://doi.org/10.1016/j.ijsolstr.2010.12.001.
  21. Lee, J. and Hong, J.W. (2018), "Crack initiation and fragmentation processes in pre-cracked rock-like materials", Geomech. Eng., 15(5), 1047-1059. https://doi.org/10.12989/gae.2018.15.5.1047.
  22. Li, T.C., Lyu, L.X., Zhang, S.L. and Sun, J.C. (2015), "Development and application of a statistical constitutive model of damaged rock affected by the load-bearing capacity of damaged elements", J. Zhejiang Univ. Sci. A, 16(8), 644-655. https://doi.org/10.1631/jzus.A1500034.
  23. Liu, L.W., Li, H.B., Li, X.F. and Wu, R.J. (2020), "Full-field strain evolution and characteristic stress levels of rocks containing a single pre-existing flaw under uniaxial compression", B. Eng. Geol. Environ., 79(6), 3145-3161. https://doi.org/10.1007/s10064-020-01764-4.
  24. Manouchehrian, A., Sharifzadeh, M., Marji, M.F. and Gholamnejad, J. (2014), "A bonded particle model for analysis of the flaw orientation effect on crack propagation mechanism in brittle materials under compression", Arch. Civ. Mech. Eng., 14(1), 40-52. https://doi.org/10.1016/j.acme.2013.05.008.
  25. Martin, C.D. and Chandler, N.A. (1994), "The progressive fracture of lac du bonnet granite", Int. J. Rock Mech. Min. Sci., 31(6), 643-659. https://doi.org/10.1016/0148-9062(94)90005-1.
  26. Maruvanchery, V. and Kim, E. (2018), "Effects of water on rock fracture properties: Studies of mode I fracture toughness, crack propagation velocity, and consumed energy in calcite-cemented sandstone", Geomech. Eng,, 17(1), 57-67. https://doi.org/10.12989/gae.2019.17.1.057.
  27. Mondal, S., Olsen-Kettle, L. and Gross, L. (2019), "Simulating damage evolution and fracture propagation in sandstone containing a preexisting 3-D surface flaw under uniaxial compression", Int. J. Numer. Anal. Met. Geomech., 43(7), 1448-1466. https://doi.org/10.1002/nag.2908.
  28. Morgan, S.P., Johnson, C.A. and Einstein, H.H. (2013), "Cracking processes in barre granite: Fracture process zones and crack coalescence", Int. J. Fract., 180(2), 177-204. https://doi.org/10.1007/s10704-013-9810-y.
  29. Naderloo, M., Moosavi, M. and Ahmadi, M. (2019), "Using acoustic emission technique to monitor damage progress around joints in brittle materials", Theor. Appl. Fract. Mec., 104, 102368. https://doi.org/10.1016/j.tafmec.2019.102368.
  30. Pakzad, R., Wang, S.Y. and Sloan, S. (2018), "Numerical study of the failure response and fracture propagation for rock specimens with preexisting flaws under compression", Int. J. Geomech., 18(7), 04018070. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001172.
  31. Park, C.H. and Bobet, A. (2010), "A crack initiation, propagation and coalescence from frictional flaws in uniaxial compression", Eng. Fract. Mech., 77(14), 2727-2748. https://doi.org/10.1016/j.engfracmech.2010.06.027.
  32. Son, M. and Adedokun, S. (2016), "Effect of joint inclination angles on the earth pressure against the support system in a jointed rock mass", KSCE J. Civ. Eng., 20(4), 1259-1266. https://doi.org/10.1007/s12205-015-0487-9.
  33. Tian, W.L. and Yang, S.Q. (2017), "Experimental and numerical study on the fracture coalescence behavior of rock-like materials containing two non-coplanar filled fissures under uniaxial compression", Geomech. Eng., 12(3), 541-560. https://doi.org/10.12989/gae.2017.12.3.541.
  34. Wang, X.T., Li, S.C., Xu, Z.H., Li, X.Z., Lin, P. and Lin, C.J. (2019), "An interval risk assessment method and management of water inflow and inrush in course of karst tunnel excavation", Tunn. Undergr. Sp. Tech., 92, 103033. https://doi.org/10.1016/j.tust.2019.103033.
  35. Wang, H.L., Zhao, K., Qu, X., Xu, J.R. and Cai, M. (2020), "Hydro-mechanical properties of rock-like specimens with preexisting intermittent joints", Eur. J. Environ. Civ. Eng. https://doi.org/10.1080/19648189.2020.1763853.
  36. Wong, L.N.Y. and Xiong, Q.Q. (2018), "A method for multiscale interpretation of fracture processes in carrara marble specimen containing a single flaw under uniaxial compression", J. Geophys. Res-Sol. Ea., 123(8), 6459-6490. https://doi.org/10.1029/2018JB015447.
  37. Wu, J.Y., Feng, M.M., Han, G.S., Yao, B.Y. and Ni, X.Y. (2019), "Loading rate and confining pressure effect on dilatancy, acoustic emission, and failure characteristics of fissured rock with two pre-existing flaws", Comptes Rendus Mecanique, 347(1), 62-89. https://doi.org/10.1016/j.crme.2018.10.002.
  38. Xiao, W.J., Zhang, D.M. and Wang, X.J. (2020), "Experimental study on progressive failure process and permeability characteristics of red sandstone under seepage pressure", Eng. Geol., 265, 105406. https://doi.org/10.1016/j.enggeo.2019.105406.
  39. Xu, J. and Li, Z.X. (2019), "Crack propagation and coalescence of step-path failure in rocks", Rock Mech. Rock Eng., 52(4), 965-979. https://doi.org/10.1007/s00603-018-1661-4.
  40. Yang, S.Q., Ranjith, P.G., Huang, Y.H., Yin, P.F., Jing, H.W., Gui, Y.L. and Yu, Q.L (2015), "Experimental investigation on mechanical damage characteristics of sandstone under triaxial cyclic loading", Geophys. J. Int., 201, 662-682. https://doi.org/10.1093/gji/ggv023.
  41. Yu, J., Yao, W., Duan, K., Liu, X.Y. and Zhu, Y.L. (2020), "Experimental study and discrete element method modeling of compression and permeability behaviors of weakly anisotropic sandstones", Int. J. Rock Mech. Min. Sci., 134, 104437. https://doi.org/10.1016/j.ijrmms.2020.104437.
  42. Zeng, W., Yang, S.Q., Tian, W.L. and Wen, K. (2018), "Numerical investigation on permeability evolution behavior of rock by an improved flow-coupling algorithm in particle flow code", J. Cent. South Univ., 25(6), 1367-1385. https://doi.org/10.1007/s11771-018-3833-5.
  43. Zhao, C., Niu, J.L., Zhang, Q.Z., Zhao, C.F. and Zhou, Y.M. (2019), "Failure characteristics of rock-like materials with single flaws under uniaxial compression", B. Eng. Geol. Environ., 78(1), 593-603. https://doi.org/10.1007/s10064-018-1379-2.