References
- Andersland, O.B. and Anderson, D.M. (1978), Geotechnical Engineering for Cold Regions, McGraw-Hill, New York, U.S.A.
- Andersland, O.B. and Ladanyi, B. (2004), Frozen Ground Engineering, (2nd Edition), American Society of Civil Engineering, John Wiley and Sons, Hoboken, New Jersey, U.S.A.
- Babaei, M. (2016), "Finite element analysis of freezing effect on soil nail wall", Ph.D. Dissertation, Ryerson University, Toronto, Canada.
- Bentler, J. and Labuz, J. (2006), "Performance of a cantilever retaining wall", J. Geotech. Geoenviron. Eng., 132(8), 1062-1070. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:8(1062).
- Blake, J.R., Renaud, J.P., Anderson, M.G. and Hencher, S.R. (2003), "Prediction of rainfall-induced transient water pressure head behind a retaining wall using a high-resolution finite element model", Comput. Geotech., 30(6), 431-442. https://doi.org/10.1016/S0266-352X(03)00055-7.
- Brooker, E.W. and Ireland, H.O. (1965), "Earth pressures at rest related to stress history", Can. Geotech. J., 2(1), 1-15. https://doi.org/10.1139/t65-001.
- Chamberlain, E.J. and Gow, A.J. (1979), "Effect of freezing and thawing on the permeability and structure of soils", Eng. Geol., 13(1-4), 73-92. https://doi.org/10.1016/0013-7952(79)90022-X.
- Clough, G.W. and Duncan, J.M. (1971), "Finite element analyses of retaining wall behavior", J. Soil. Mech. Found. Div., 97(12), 1657-1673. https://doi.org/10.1061/JSFEAQ.0001713
- Côte, J. and Konrad, J.M. (2005), "A generalized thermal conductivity model for soils and construction materials", Can. Geotech. J., 42(2), 443-458. https://doi.org/10.1139/t04-106.
- Eigenbrod, K.D. (1996), "Effects of cyclic freezing and thawing on volume changes and permeabilities of soft fine-gained soils", Can. Geotech. J., 33(4), 529-537. https://doi.org/10.1139/t96-079-301.
- Farouki, O.T. (1981), "Thermal properties of soil in cold regions", Cold Reg. Sci. Technol., 5(1), 67-75. https://doi.org/10.1016/0165-232X(81)90041-0.
- Graham, J. and Au, V.C.S. (1985), "Effects of freeze-thaw and softening on a natural clay at low stresses", Can. Geotech. J., 22(1), 69-78. https://doi.org/10.1139/t85-007.
- Jame, Y.W. and Norum, D.I. (1980), "Heat and mass transfer in a freezing unsaturated porous medium", Water Resour. Res. 16(4), 811-819. https://doi.org/10.1029/WR016i004p00811.
- Jin, H.W., Lee, J., Ryu, B.H., Shin, Y. and Jang, Y. (2019), "Experimental assessment of the effect of frozen fringe thickness on frost heave", Geomech. Eng., 19(2), 193-199. http://doi.org/10.12989/gae.2019.19.2.193.
- Kim, I., Lee, D., Kim, Y., Yun, T.S. and Lee, J. (2021), "Effects of pore water volume on K0 for sand subject to freezing and thawing", J. Geotech. Geoenviron. Eng., 147(3), 04020173. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002468.
- Lee, S. (2019), "Experimental study on effect of underground excavation distance on the behavior of retaining wall", Geomech. Eng., 17(5), 413-420. http://doi.org/10.12989/gae.2019.17.5.413.
- Lee, J., Lee, D., Park, D., Kyung, D., Kim, G. and Kim, I. (2016), "Effect of freezing and thawing on K0 geostatic state for granular materials", Granul. Matter. 18, 69. https://doi.org/10.1007/s10035-016-0665-6.
- Leroueil, S., Tardif, J., Roy, M., Rochelle, P.L. and Konrad, J.M. (1991), "Effects of frost on the mechanical behaviour of Champlain Sea clays", Can. Geotech. J., 28(5), 690-697. https://doi.org/10.1139/t91-083.
- Liu, J., Chang, D. and Yu, Q. (2016), "Influence of freeze-thaw cycles on mechanical properties of a silty sand", Eng. Geol., 210, 23-32. https://doi.org/10.1016/j.enggeo.2016.05.019.
- Michalowski, R.L. and Zhu, M. (2006), "Modelling of freezing in frost-susceptible soils", Comput. Assisted Mech. Eng. Sci., 13, 613-625.
- Milly, P.C.D. (1984), "A simulation analysis of thermal effects on evaporation from soil", Water Resour. Res., 20(8), 1087-1098. https://doi.org/10.1029/WR020i008p01087.
- Paudel, B. and Wang, B. (2010), "Freeze-thaw effect on consolidation of the soils from the Mackenzie valley, Canada", Proceedings of the Geo2010 - the 63rd Canadian Geotechnical Conference and 1st Joint CGS/CNC-IPA Permafrost Specialty Conference, Calgary, Canada, September.
- Qi, J., Vermeer, P.A. and Cheng, G. (2006), "A review of the influence of freeze-thaw cycles on soil geotechnical properties", Permafrost Periglac., 17(3), 245-252. https://doi.org/10.1002/ppp.559.
- Saggu, R. and Chakraborty, T. (2017), "Thermomechanical analysis and parametric study of geothermal energy piles in sand", Int. J. Geomech., 17(9), 04017076. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000962.
- Tang, L., Du, Y., Liu, L., Jin, L., Yang, L. and Li, G. (2020), "Effect mechanism of unfrozen water on the frozen soil-structure interface during the freezing-thawing process", Geomech. Eng., 22(3), 245-254. http://doi.org/10.12989/gae.2020.22.3.245.
- Wang, D.Y., Ma, W., Niu, Y.H., Chang, X.X. and Wen, Z. (2007), "Effects of cyclic freezing and thawing on mechanical properties of Qinghai-Tibet clay", Cold Reg. Sci. Technol., 48(1), 34-43. https://doi.org/10.1016/j.coldregions.2006.09.008.
- Yao, X., Qi, J. and Yu, F. (2014), "Study on lateral earth pressure coefficient at rest for frozen soils", J. Offshore Mech. Arct. Eng., 136(1), 011301. https://doi.org/10.1115/1.4025546.
- Yoo, C. and Jung, H. (2006), "Case history of geosynthetic reinforced segmental retaining wall failure", J. Geotech. Geoenviron. Eng., 132(12), 1538-1548. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:12(1538).
- Yun, T.S. and Santamarina, J.C. (2008), "Fundamental study of thermal conduction in dry soils", Granul. Matter., 10(3), 197-207. https://doi.org/10.1007/s10035-007-0051-5.
- Zhang, L., Ma, W., Yang, C. and Yuan, C. (2014), "Investigation of the pore water pressures of coarse-grained sandy soil during open-system step-freezing and thawing tests", Eng. Geol. 181, 233-248. https://doi.org/10.1016/j.enggeo.2014.07.020.
- Zhang, Y. (2014), "Thermal-hydro-mechanical model for freezing and thawing of soils", Ph.D Dissertation, University of Michigan, Michigan, U.S.A.