References
- Abay, A., Barbieri, G. and Woldearegay, K. (2019), "GIS-based landslide susceptibility evaluation using Analytical Hierarchy Process (AHP) approach: The case of Tarmaber District, Ethiopia", Momona Ethiopian J. Sci., 11(1), 14-36. https://doi.org/10.4314/mejs.v11i1.2.
- Aghanabati, A. (2007), Geology of Iran, Geological Survey of Iran press, Tehran, Iran (in Persian).
- Azarafza, M. and Ghazifard, A. (2016), "Urban geology of Tabriz City: Environmental and geological constraints", Adv. Environ. Res., 5(2), 95-108. http://doi.org/10.12989/aer.2016.5.2.095.
- Azarafza, M. and Mokhtari, M.H. (2013), "Evaluation of drought effect on Urmia Lake salinity changes using remote sensing techniques", Arid Biom Sci. Res. J., 3(2), 1-14 (in Persian).
- Azarafza, M., Asghari-Kaljahi, E. and Akgun, H. (2017a), "Assessment of discontinuous rock slope stability with block theory and numerical modeling: A case study for the South Pars Gas Complex, Assalouyeh, Iran", Environ. Earth Sci., 76(11), 397. https://doi.org/10.1007/s12665-017-6711-9.
- Azarafza, M., Asghari-Kaljahi, E. and Akgun, H. (2017b), "Numerical modeling of discontinuous rock slopes utilizing the 3DDGM (three-dimensional discontinuity geometrical modeling) method", B. Eng. Geol. Environ., 76(3), 989-1007. https://doi.org/10.1007/s10064-016-0879-1.
- Azarafza, M., Ghazifard, A., Akgun, H. and Asghari-Kaljahi, E. (2018), "Landslide susceptibility assessment of South Pars Special Zone, southwest Iran", Environ. Earth Sci., 77, 805. https://doi.org/10.1007/s12665-018-7978-1.
- Bagheri Shendi, M. and Azarafza, M. (2018), "A case study for utilization of image processing in jointed network detection in open-pit mining", Geotech. Geol., 14(2), 197-202.
- Bell, F.G. (2007), Engineering Geology, Butterworth-Heinemann, Oxford, U.K.
- Calcaterra, D. and Parise, M. (2010), Weathering as a Predisposing Factor to Slope Movements, Geological Society of London Press, London, U.K.
- Castellanos Abella, E.A. and Van Westen, C.J. (2008), "Qualitative landslide susceptibility assessment by multicriteria analysis: A case study from San Antonio del Sur, Guantanamo, Cuba", Geomorphology, 94(3-4), 453-466. https://doi.org/10.1016/j.geo morph.2006.10.038.
- Chen, T., Kuo, C.F. and Chen, J.C.Y. (2019), "Computer vision monitoring and detection for landslides", Struct. Monit. Maint., 6(2), 161-171. http://doi.org/10.12989/smm.2019.6.2.161.
- Chen, W., Li, W., Chai, H., Hou, E., Li, X. and Ding, X. (2016), "GIS-based landslide susceptibility mapping using analytical hierarchy process (AHP) and certainty factor (CF) models for the Baozhong region of Baoji City, China", Environ. Earth Sci., 75(1), 63. https://doi.org/10.1007/s12665-015-4795-7.
- Chen, W., Pourghasemi, H.R. and Zhao, Z. (2017), "A GIS-based comparative study of Dempster-Shafer, logistic regression and artificial neural network models for landslide susceptibility mapping", Geocarto. Int., 32(4), 367-385. https://doi.org/10.1080/10106049.2016.1140824.
- Chen, X.P., Zhu, H.H., Huang, J.W. and Liu, D. (2016), "Stability analysis of an ancient landslide considering shear strength reduction behavior of slip zone soil", Landslides, 13(1), 173-181. https://doi.org/10.1007/s10346-015-0629-7.
- Choi, J., Oh, H.J., Lee, H.J., Lee, C. and Lee, S. (2012), "Combining landslide susceptibility maps obtained from frequency ratio, logistic regression, and artificial neural network models using ASTER images and GIS", Eng. Geol., 124, 12-23. https://doi.org/10.1016/j.enggeo.2011.09.011.
- Du, J., Glade, T., Woldai, T., Chai, B. and Zeng, B. (2020), "Landslide susceptibility assessment based on an incomplete landslide inventory in the Jilong Valley, Tibet, Chinese Himalayas", Eng. Geol., 270, 105572. https://doi.org/10.1016/j. enggeo.2020.105572.
- Ercanoglu, M. and Gokceoglu, C. (2004), "Use of fuzzy relations to produce landslide susceptibility map of a landslide prone area (West Black Sea Region, Turkey)", Eng. Geol., 75(3-4), 229-250. https://doi.org/10.1016/j.enggeo.2004.06.001.
- Ercanoglu, M., Kasmer, O. and Temiz, N. (2008), "Adaptation and comparison of expert opinion to analytical hierarchy process for landslide susceptibility mapping", B. Eng. Geol. Environ., 67(4), 565-578. https://doi.org/10.1007/s10064-008-0170-1.
- ESRI (2017), ArcGIS Software Version 10.4, International Supplier of Geographic Information System Software, web GIS and geodatabase management applications, https://www.esri.com.
- Geological Survey of Iran (2009), Geological Map of Tabriz Region-Scale: 1:250.000 and 1:100.000. Geological Survey of Iran Press, Tehran, Iran (in Persian).
- Hasekiogullari, G. and Ercanoglu, M. (2012), "A new approach to use AHP in landslide susceptibility mapping: A case study at Yenice (Karabuk, NW Turkey)", Nat. Hazards, 63(2), 1157-1179. https://doi.org/10.1007/s11069-012-0218-1.
- Highland, L.M. and Bobrowsky, P. (2008), The Landslide Handbook-A Guide to Understanding Landslides, US Geological Survey Circular, Reston, Virginia, U.S.A.
- Iran Meteorological Organization (2019), Climatological data from Tabriz station, The Iran Meteorological Organization, http://www.irimo.ir/.
- Kanungo, D.P., Arora, M.K., Sarkar, S. and Gupta, R.P. (2006), "A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas", Eng. Geol., 85(3-4), 347-366. https://doi.org/10.1016/j.enggeo.2006.03.004.
- Kayastha, P., Dhital, M.R. and De Smedt, F. (2013), "Application of the analytical hierarchy process (AHP) for landslide susceptibility mapping: A case study from the Tinau watershed, west Nepal", Comput. Geosci., 52, 398-408. https://doi.org/10.1 016/j.cageo.2012.11.003. https://doi.org/10.1016/j.cageo.2012.11.003
- Khezri, S. (2011), "Landslide susceptibility in the Zab Basin, northwest of Iran", Procedia - Soc Behav Sci., 19, 726-731. https://doi.org/10.1016/j.sbspro.2011.05.191.
- Kim, Y. and Jeong, S. (2017), "Modeling of shallow landslides in an unsaturated soil slope using a coupled model", Geomech. Eng., 13(2), 353-370. http://doi.org/10.12989/gae.2017.13.2.353.
- Komac, K. (2006), "A landslide susceptibility model using the Analytical Hierarchy Process method and multivariate statistics in perialpine Slovenia", Geomorphology, 74(1-4), 17-28. https://doi. org/10.1016/j.geomorph.2005.07.005.
- Liu, D. and Chen, X. (2015), "Shearing characteristics of slip zone soils and strain localization analysis of a landslide", Geomech. Eng., 8(1), 33-52. http://doi.org/10.12989/gae.2015.8.1.033.
- Lorentz, J.F., Calijuri, M.L., Marques, E.G. and Baptista, A.C. (2016), "Multicriteria analysis applied to landslide susceptibility mapping", Nat. Hazards, 83(1), 41-52. https://doi.org/10.1007/s11069-016-2300-6.
- Mamdani, E.H. (1977), "Application of fuzzy logic to approximate reasoning using linguistic synthesis", IEEE T. Comput. Arch. Lett., 26(12), 1182-1191. https://doi.org/10.1109/TC.1977.1674779.
- Mamdani, E.H. and Assilian, S. (1975), "An experiment in linguistic synthesis with a fuzzy logic controller", Int. J. ManMach. Stud., 7(1), 1-13. https://doi.org/10.1016/S0020-7373(75)80002-2.
- MathWorks (2014), MATLAB, version R2014b, The MathWorks Inc, Natick, Massachusetts, U.S.A.
- Mokarram, M. and Zarei, A.R. (2018), "Landslide susceptibility mapping using Fuzzy-AHP", Geotech. Geol. Eng., 36(6), 3931-3943. https://doi.org/10.1007/s10706-018-0583-y.
- Neuhauser, B., Damm, B. and Terhorst, B. (2012), "GIS-based assessment of landslide susceptibility on the base of the weights-of-evidence model", Landslides, 9(4), 511-528. https:// doi.org/10.1007/s10346-011-0305-5.
- Nogol-Sadat, M.A. and Almasian, A. (1993), Tectonic Map of Iran 1:1,000,000 Treatise on the Geology of Iran, Geological Survey of Iran, Tehran, Iran (in Persian).
- Pourghasemi, H.R., Pradhan, B. and Gokceoglu, C. (2012), "Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran", Nat. Hazards, 63, 965-996. https://doi.org/10.1007 /s11069-012-0217-2. https://doi.org/10.1007/s11069-012-0217-2
- Rhim, H.C. (2011), "Measurements of dielectric constants of soil to develop a landslide prediction system", Smart Struct. Syst., 7(4), 319-428. http://doi.org/10.12989/sss.2011.7.4.319.
- Roodposhti, M.S., Rahimi, S. and Beglou, M.J. (2013), "PROMETHEE II and fuzzy AHP: An enhanced GIS-based landslide susceptibility mapping", Nat. Hazards, 73(1), 77-95. https://doi.org/10.1007/s11069-012-0523-8.
- Sivanandam, S.N., Sumathi, S. and Deepa, S.N. (2007), Introduction to Fuzzy Logic using MATLAB, Springer, Berlin/Heidelberg, Germany.
- Vakhshoori, V. and Zare, M. (2016), "Landslide susceptibility mapping by comparing weight of evidence, fuzzy logic, and frequency ratio methods", Geomatics, Nat. Hazard Risk, 7(5), 1731-1752. https://doi.org/10.1080/19475705.2016.1144655.
- Yager, R.R. and Zadeh, L.A. (1992), An Introduction to Fuzzy Logic Applications in Intelligent Systems, Springer Science and Business Media, Berlin/Heidelberg, Germany.
- Yalcin, A. (2008), "GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): Comparisons of results and confirmations", Catena, 72, 1-12. https://doi.org/10.1016/j.catena.2007.01.003.
- Yilmaz, I. (2010), "Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks, and support vector machine", Environ. Earth Sci., 61(4), 821-836. https://doi.org/10.1007/s12665-009-0394-9.
- Yin, Y. (2011), "Recent catastrophic landslides and mitigation in China", J. Rock Mech. Geotech. Eng., 3, 10-18. https://doi.org/10.3724/SP.J.1235.2011.00010.
- Yoshimatsu, H. and Abe, S. (2006), "A review of landslide hazards in Japan and assessment of their susceptibility using an analytical hierarchic process (AHP) method", Landslides, 3(2), 149-158. https://doi.org/10.1007/s10346-005-0031-y.
- Zadeh, L.A. (1965), "Fuzzy sets", Inform. Control., 8, 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X.
- Zhao, H., Yao, L., Mei, G., Liu, T. and Ning, Y. (2017), "A fuzzy comprehensive evaluation method based on AHP and entropy for a landslide susceptibility map", Entropy, 19(8), 396. https://doi.org/10.3390/e19080396.
- Zheng, L., Chen, G., Zen, G. and Kasama, K. (2012), "Numerical validation of Multiplex Acceleration Model for earthquake induced landslides", Geomech. Eng., 4(1), 39-53. http://doi. org/10.12989/gae.2012.4.1.039.
- Zhu, H.H., Wang, Z.Y., Shi, B. and Wong, J.K.W. (2016), "Feasibility study of strain based stability evaluation of locally loaded slopes: Insights from physical and numerical modeling", Eng. Geol., 208, 39-50. https://doi.org/10.1016/j.enggeo.201 6.04.019.
Cited by
- Displacement prediction of step-like landslides based on feature optimization and VMD-Bi-LSTM: a case study of the Bazimen and Baishuihe landslides in the Three Gorges, China vol.80, pp.11, 2021, https://doi.org/10.1007/s10064-021-02454-5