References
- Armaghani, D.J., Faradonbeh, R.S., Rezaei, H., Rashid, A.S.A. and Amnieh, H.B. (2018), "Settlement prediction of the rock-socketed piles through a new technique based on gene expression programming", Neural Comput. Appl., 29(11), 1115-1125. https://doi.org/10.1007/s00521-016-2618-8.
- Armaghani, D.J., Shoes, R.S.N.S.B.R., Faizi, K. and Rashid, A.S.A. (2017), "Developing a hybrid PSO-ANN model for estimating the ultimate bearing capacity of rock-socketed piles", Neural Comput. Appl. 28(2), 391-405. https://doi.org/10.1007/s00521-015-2072-z.
- Chen, X.Y., Zhang, M.Y. and Bai, X.Y. (2019), "Axial resistance of bored piles socketed into soft rock", KSCE J. Civ. Eng., 23(1), 46-55. https://doi.org/10.1007/s12205-018-0942-5.
- Gao, R., Zeng, Y.J. and Zhu, B. (2011), "Centrifuge model testing on super-long rock-socketed bored piles under vertical loading", Geomech. Geoeng., 6(1), 21-29. https://doi.org/10.1080/17486025.2010.521590.
- Dai, G.L., Salgado, R., Gong, W.M. and Zhu, M.X. (2017), "The effect of sidewall roughness on the shaft resistance of rock-socketed piles", Acta Geotech. 12(2), 429-440. https://doi.org/10.1007/s11440-016-0470-8.
- Jafari, M., Gharsallaoui, H., Victor, K.H. and Holeyman, A. (2019), "End bearing response of open-ended pipe piles embedded in rock", Int. J. Rock Mech. Min. Sci., 119, 46-57. https://doi.org/10.1016/j.ijrmms.2019.04.008.
- Jeong, S., Ahn, S. and Seol, H. (2010), "Shear load transfer characteristics of drilled shafts socketed in rocks", Rock Mech. Rock Eng., 43(1), 41-54. https://doi.org/10.1007/s00603-009-0026-4.
- Kong, K.H., Kodikara, J. and Haque, A. (2006), "Numerical modelling of the side resistance development of piles in mudstone with direct use of sidewall roughness", Int. J. Rock Mech. Min. Sci., 43(6), 987-995. https://doi.org/10.1016/j.ijrmms.2006.01.002
- Kou, H.L., Guo, W., Zhang, M.Y. and Xu, Y.Q. (2016), "Axial resistance of long rock-socketed bored piles in stratified soils", Ocean Eng., 114, 58-65. https://doi.org/10.1016/j.oceaneng.2016.01.013.
- Liang, X., Cheng, Q.G., Wu, J.J. and Chen, J.M. (2016), "Model test of the group piles foundation of a high-speed railway bridge in mined-out area", Front Struct. Civ. Eng., 10(4), 488-498. https://doi.org/10.1007/s11709-016-0338-x.
- Li, X.Y., Bai, X.Y. and Zhang, M.Y. (2019), "Study on bearing capacity characteristics of rock socketed short pile in weathered rock site", J. Eng. Res., 7(3), 76-89.
- Liu, H.F., Zhu, C.Q., Meng, Q.S., Wang, X., Li, X.G. and Wu, W.J. (2018), "Model test on rock-socketed pile in reef limestone", Rock Soil Mech., 39(5), 1581-1588.
- Mezazigh, S. and Levacher, D. (1998), "Laterally loaded piles in sand: Slope effect on P-Y reaction curves", Can. Geotech. J., 35(3), 433-441. https://doi.org/10.1139/t98-016.
- Roh, Y., Kim, G., Kim, I. and Lee, J. (2019), "Effects of rock-support and inclined-layer conditions on load carrying behavior of piled rafts", Geomech. Eng., 18(4), 363-371. https://doi.org/10.12989/gae.2019.18.4.363.
- Schofield, A.N. (1980), "Cambridge geotechnical centrifuge operation", Geotechnique, 30(3), 227-268. https://doi.org/10.1680/geot.1980.30.3.227.
- Seo, H., Prezzi, M. and Salgado, R. (2013), "Instrumented static load test on rock-socketed micropile", J. Geotech. Geoenviron. Eng., 139(12), 2037-2047. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000946.
- Seola, H., Jeong, S., Cho, C. and You, K. (2008), "Shear load transfer for rock-socketed drilled shafts based on borehole roughness and geological strength index (GSI)", Int. J. Rock Mech. Min. Sci., 45(6), 848-861. https://doi.org/10.1016/j.ijrmms.2007.09.008.
- Sinnreich, J. and Ayithi, A. (2014), "Derivation of p-y curves from lateral pile load test instrument data", Geotech. Test J., 37(6), 20130127. https://doi.org/10.1520/GTJ20130127.
- Wang, C.D., Zhou, S.H., Wang, B.L. and Guo, P.J. (2018), "Time effect of pile-soil-geogrid-cushion interaction of rigid pile composite foundations under high-speed railway embankments", Geomech. Eng., 16(6), 589-597. https://doi.org/10.12989/gae.2018.16.6.589.
- Xing, H.F., Xiong, F., Wang, L.J. and Luo, Y. (2017), "Research on shaft resistance of rock-socketed piles based on the cavity expansion theory", Mar. Georesour. Geotec., 35(6), 873-877. https://doi.org/10.1080/1064119X.2016.1257670.
- Xing, H.F., Zhang, Z., Meng, M.H. Luo, Y. and Ye, G.B. (2014), "Centrifuge tests of superlarge-diameter rock-socketed piles and their bearing characteristics", J. Bridge. Eng., 19(6), 04014010. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000582.
- Xing, H.F., Liu, L.L. and Luo, Y. (2019), "Effects of construction technology on bearing behaviors of rock-socketed bored piles as bridge foundations", J. Bridge. Eng., 24(4), 05019002. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001368.
- Xu, W., Liu, B., Zhou, Y.Q. and Han, Y.H. (2017), "Construction of 8.0-m diameter rock-socketed piles in a large-scale deep excavation", Geotech. Geol. Eng., 35(5), 2455-2466. https://doi.org/10.1007/s10706-017-0229-5.
- Yuan, H.P., Zhao, P., Wang, Y.X., Zhou, H.L., Luo, Y. H. and Guo, P.P. (2017), "Mechanism of deformation compatibility and pile foundation optimum for long-span tower foundation in floodplain deposit zone", Int. J. Civ. Eng., 15(6), 887-894. https://doi.org/10.1007/s40999-016-0066-6.
- Yu, J., Cai, Y.Y. and Wu, W.B. (2013), "Effect of sediment on vertical dynamic impedance of rock-socketed pile with large diameter", J. Cent. South Univ., 20(10), 2856-2862. https://doi.org/10.1007/s11771-013-1806-2.
- Zhang, L. M. and Wong, E.Y.W. (2007), "Centrifuge modeling of large-diameter bored pile groups with defects", J. Geotech. Geoenviron. Eng., 133(9), 1091-1101. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:9(1091).
- Zhang, X.L., Duan, B.C., Wang, C.Z. and Wang, D.Y. (2019), "Dynamic response analysis of lateral impact force of frame wharf with rock-socketed piles in Inland River steel sheath", Adv. Civ. Eng. 6918376. https://doi.org/10.1155/2019/6918376.
- Zou, J.F., Yang, T. and Deng, D.P. (2019), "Field test of the long-term settlement for the post-grouted pile in the deep-thick soft soil", Geomech. Eng., 19(2), 115-126. https://doi.org/10.12989/gae.2019.19.2.115.