참고문헌
- Cai, M. and Kaiser, P.K. (2004), "Numerical simulation of the Brazilian test and the tensile strength of anisotropic rocks and rocks with pre-existing cracks", Int. J. Rock Mech. Min. Sci., 41(3), 450-451. http://doi.org/10.1016/j.ijrmms.2003.12.111.
- Carneiro, F.L.L.B. (1943), "A new method to determine the tensile strength of concrete", Proceedings of the 5th Meeting of the Brazilian Association for Technical Rules, Sao Paulo, Brazil.
- Chen, C.S., Pan, E. and Amadei, B. (1998), "Determination of deformability and tensile strength of anisotropic rock using Brazilian tests", Int. J. Rock Mech. Min. Sci., 35(1), 43-61. https://doi.org/10.1016/S0148-9062(97)00329-X.
- Chen, Y. and Irfan, M. (2018), "Experimental study of kaiser effect under cyclic compression and tension tests", Geomech. Eng., 14(2), 203-209. https://doi.org/10.12989/gae.2018.14.2.203.
- Chen, Y., Zuo, J., Liu, D. and Wang, Z. (2019), "Deformation failure characteristics of coal-rock combined body under uniaxial compression: Experimental and numerical investigations", B. Eng. Geol. Environ., 78(5), 3449-3464. https://doi.org/10.1007/s10064-018-1336-0.
- Cho, J.W., Kim, H., Jeon, S. and Min, K.B. (2012), "Deformation and strength anisotropy of Asan gneiss, Boryeong shale, and Yeoncheon schist", Int. J. Rock Mech. Min. Sci., 50, 158-169. https://doi.org/10.1016/j.ijrmms.2011.12.004.
- Claesson, J. and Bohloli, B. (2002), "Brazilian test: Stress field and tensile strength of anisotropic rocks using an analytical solution", Int. J. Rock Mech. Min. Sci., 39(8), 991-1004. http://doi.org/10.1016/S1365-1609(02)00099-0.
- Fairhurst, C. (1964), "On the validity of the 'Brazilian' test for brittle materials", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 1(4), 535-546. http://doi.org/10.1016/0148-9062(64)90060-9.
- Gong, F.Q., Li, X.B. and Zhao, J. (2010), "Analytical algorithm to estimate tensile modulus in Brazilian disk splitting tests", Chin. J. Rock Mech. Eng., 29(5), 881-891.
- Hondros, G. (1959), "The evaluation of Poisson's ratio and the modulus of materials of a low tensile resistance by the Brazilian (indirect tensile) test with particular reference to concrete", Austr. J. Appl. Sci., 10(3), 243-268.
- Hudson, J.A., Brown, E.T. and Rummel, F. (1972), "The controlled failure of rock discs and rings loaded in diametral compression", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 9(2), 241-248. http://doi.org/10.1016/0148-9062(72)90025-3.
- Jaeger, J.C., Cook, N.G.W. and Zimmerman, R. (2007), Fundamentals of Rock Mechanics, 4th Edition, Wiley-Blackwell.
- Liang, Z.Z., Xing, H., Wang, S.Y., Williams, D.J. and Tang, C.A. (2012), "A three-dimensional numerical investigation of the fracture of rock specimens containing a pre-existing surface flaw", Comput. Geotech., 45, 19-33. https://doi.org/10.1016/j.compgeo.2012.04.011.
- Liu, C. (2010), "Elastic constants determination and deformation observation using Brazilian disk geometry", Exp. Mech., 50(7), 1025-1039. https://doi.org/10.1007/s11340-009-9281-2.
- Liu, Y., Dai, F., Xu, N., Zhao, T. and Feng, P. (2018), "Experimental and numerical investigation on the tensile fatigue properties of rocks using the cyclic flattened Brazilian disc method", Soil Dyn. Earthq. Eng., 105, 68-82. https://doi.org/10.1016/j.soildyn.2017.11.025.
- Ning, Y.J., Yang, J., An, X.M. and Ma, G.W. (2011), "Modelling rock fracturing and blast-induced rock mass failure via advanced discretisation within the discontinuous deformation analysis framework", Comput. Geotech., 38(1), 40-49. http://doi.org/10.1016/j.compgeo.2010.09.003.
- Park, B., Min, K.B., Thompson, N. and Horsrud, P. (2018), "Three-dimensional bonded-particle discrete element modeling of mechanical behavior of transversely isotropic rock", Int. J. Rock Mech. Min. Sci., 110, 120-132. https://doi.org/10.1016/j.ijrmms.2018.07.018.
- Patel, S. and Martin, C.D. (2018), "Evaluation of tensile Young's modulus and Poisson's ratio of a bi-modular rock from the displacement measurements in a Brazilian test", Rock Mech. Rock Eng., 51(2), 361-373. https://doi.org/10.1007/s00603-017-1345-5.
- Perras, M.A. and Diederichs, M.S. (2014), "A review of the tensile strength of rock: Concepts and testing", Geotech. Geol. Eng., 32(2), 525-546. https://doi.org/10.1007/s10706-014-9732-0.
- Roy, D.G. and Singh, T.N. (2016), "Effect of heat treatment and layer orientation on the tensile strength of a crystalline rock under Brazilian test condition", Rock Mech. Rock Eng., 49(5), 1663-1677. https://doi.org/10.1007/s00603-015-0891-y.
- Stimpson, B. and Chen, R. (1993), "Measurement of rock elastic moduli in tension and in compression and its practical significance", Can. Geotech. J., 30(2), 338-347. https://doi.org/10.1139/t93-028.
- Sundaram, P.N. and Corrales, J.M. (1980), "Brazilian tensile strength of rocks with different elastic properties in tension and compression", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 17(2), 131-133. https://doi.org/10.1016/0148-9062(80)90265-X.
- Timoshenko, S.P. and Goodier, J.N. (2013), Theory of elasticity, Beijing Higher Education Press.
- Ulusay, R. and Hudson, J.A. (2007), The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 1974-2006, Commission on Testing Methods, International Society for Rock Mechanics.
- Wang, Q.Z., Jia, X.M., Kou, S.Q., Zhang, Z.X. and Lindqvist, P.A. (2004), "The flattened Brazilian disc specimen used for testing elastic modulus, tensile strength and fracture toughness of brittle rocks: Analytical and numerical results", Int. J. Rock Mech. Min. Sci., 41(2), 245-253. http://dx.doi.org/10.1016/S1365-1609(03)00093-5.
- Wei, J., Niu, L.L., Song, J.J. and Xie, L.M. (2019), "Estimation of rock tensile and compressive moduli with Brazilian disc test", Geomech. Eng., 19(4), 353-360. https://doi.org/10.12989/gae.2019.19.4.353.
- Wei, M.D., Dai, F., Xu, N.-W., Zhao, T. and Liu, Y. (2017), "An experimental and theoretical assessment of semi-circular bend specimens with chevron and straight-through notches for mode I fracture toughness testing of rocks", Int. J. Rock Mech. Min. Sci., 99, 28-38. https://doi.org/10.1016/j.ijrmms.2017.09.004.
- Wijk, G. (1978), "Some new theoretical aspects of indirect measurements of the tensile strength of rocks", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 15(4), 149-160. http://doi.org/10.1016/0148-9062(78)91221-4.
- Ye, J.H., Wu, F.Q. and Sun, J.Z. (2009), "Estimation of the tensile elastic modulus using Brazilian disc by applying diametrically opposed concentrated loads", Int. J. Rock Mech. Min. Sci., 46(3), 568-576. http://doi.org/10.1016/j.ijrmms.2008.08.004.
- Ye, J.H., Wu, F.Q., Zhang, Y. and Ji, H.G. (2012), "Estimation of the bi-modulus of materials through deformation measurement in a Brazilian disk test", Int. J. Rock Mech. Min. Sci., 52, 122-131. https://doi.org/10.1016/j.ijrmms.2012.03.010.
- Yu, Q.L., Zhu, W.C., Tang, C.A. and Yang, T.H. (2014), "Impact of rock microstructures on failure processes - Numerical study based on DIP technique", Geomech. Eng., 7(4), 375-401. http://doi.org/10.12989/gae.2014.7.4.375.
- Yu, Y., Yin, J. and Zhong, Z. (2006), "Shape effects in the Brazilian tensile strength test and a 3D FEM correction", Int. J. Rock Mech. Min. Sci., 43(4), 623-627. https://doi.org/10.1016/j.ijrmms.2005.09.005.
- Yuan, R. and Shen, B. (2017), "Numerical modelling of the contact condition of a Brazilian disk test and its influence on the tensile strength of rock", Int. J. Rock Mech. Min. Sci., 93, 54-65. https://doi.org/10.1016/j.ijrmms.2017.01.010.
- Zhou, G.L., Xu, T., Heap, M.J., Meredith, P.G., Mitchell, T.M., Sesnic, A.S.Y. and Yuan, Y. (2020), "A three-dimensional numerical meso-approach to modeling time-independent deformation and fracturing of brittle rocks", Comput. Geotech., 117, 103274. https://doi.org/10.1016/j.compgeo.2019.103274.