DOI QR코드

DOI QR Code

Two Extensions of a Star Operation on D to the Polynomial Ring D[X]

  • Chang, Gyu Whan (Department of Mathematics Education, Incheon National University) ;
  • Kim, Hwankoo (Division of Computer and Information Engineering, Hoseo University)
  • 투고 : 2020.02.22
  • 심사 : 2020.05.30
  • 발행 : 2021.03.31

초록

Let D be an integral domain with quotient field K, X an indeterminate over D, ∗ a star operation on D, and Cl∗ (D) be the ∗-class group of D. The ∗w-operation on D is a star operation defined by I∗w = {x ∈ K | xJ ⊆ I for a nonzero finitely generated ideal J of D with J∗ = D}. In this paper, we study two star operations {∗} and [∗] on D[X] defined by A{∗} = ∩P∈∗w-Max(D) ADP [X] and A[∗] = (∩P∈∗w-Max(D) AD[X]P[X]) ∩ AK[X]. Among other things, we show that Cl∗(D) ≅ Cl[∗](D[X]) if and only if D is integrally closed.

키워드

참고문헌

  1. D. D. Anderson and S. J. Cook, Two star operations and their induced lattices, Comm. Algebra, 28(2000), 2461-2475. https://doi.org/10.1080/00927870008826970
  2. J. W. Brewer and D. L. Costa, Seminormality and projective modules over polynomial rings, J. Algebra, 58(1979), 208-216. https://doi.org/10.1016/0021-8693(79)90200-x
  3. G. W. Chang, ⁎-Noetherian domains and the ring $D[X]_{N_{\ast}$, J. Algebra, 297(2006), 216-233. https://doi.org/10.1016/j.jalgebra.2005.08.020
  4. G. W. Chang and M. Fontana, Upper to zero and semistar operations in polynomial rings, J. Algebra, 318(2007), 484-493. https://doi.org/10.1016/j.jalgebra.2007.06.010
  5. G. W. Chang and M. Fontana, An overring-theoretic approach to polynomial extensions of star and semistar operations, Comm. Algebra, 39(2011), 1956-1978. https://doi.org/10.1080/00927872.2010.480959
  6. G. W. Chang and J. Park, Star-invertible ideals of integral domains, Boll. Unione. Mat. Ital. Sez. B Artic. Ric. Mat. (8), 6(2003), 141-150.
  7. G. W. Chang and M. Zafrullah, The w-integral closure of integral domains, J. Algebra, 259(2006), 195-210.
  8. S. Gabelli, On divisorial ideals in polynomial rings over Mori domains, Comm. Algebra, 15(1987), 2349-2370. https://doi.org/10.1080/00927878708823540
  9. R. Gilmer, Multiplicative ideal theory, Marcel Dekker, New York, 1972.
  10. R. Gilmer and R. Heitmann, On Pic(R[X]) for R seminormal, J. Pure Appl. Algebra, 16(1980), 251-257. https://doi.org/10.1016/0022-4049(80)90030-4
  11. E. Houston and M. Zafrullah, On t-invertibility II, Comm. Algebra, 17(1989), 1955-1969. https://doi.org/10.1080/00927878908823829
  12. B. G. Kang, Prufer v-multiplication domains and the ring R[X]Nv, J. Algebra, 123(1989), 151-170. https://doi.org/10.1016/0021-8693(89)90040-9
  13. G. Picozza, A note on semistar Noetherian domains, Houston J. Math., 33(2007), 415-432.