DOI QR코드

DOI QR Code

Exploration of shockwaves on polymeric membrane physical properties and performance

  • Lakshmi, D. Shanthana (RO Membrane Division, CSIR-Central Salt and Marine Chemical Research Institute) ;
  • Saxena, Mayank (RO Membrane Division, CSIR-Central Salt and Marine Chemical Research Institute) ;
  • Ekambaram, Shivakarthik (Atomic, Molecular, and Optical Physics Division, Physical Research Laboratory) ;
  • Sivaraman, Bhalamurugan (Atomic, Molecular, and Optical Physics Division, Physical Research Laboratory)
  • Received : 2020.03.10
  • Accepted : 2021.03.08
  • Published : 2021.01.25

Abstract

The Commercial polymeric membranes like Polysulfone (PSF), Polyvinylidene difluoride (PVDF) and Polyacrylonitrile (PAN) which are an integral part of water purification investigation were chosen for the shockwave (SW) exposure experiment. These membranes were prepared by blending polymer (wt. %) / DMF (solvent) followed by phase-inversion casting technique. Shockwaves are generated by using Reddy Tube lab module (Table-top Shocktube) with range of pressure (1.5, 2.5 and 5 bar). Understanding the changes in membrane before and after shock wave treatment by parameters, i.e., pure water flux (PWF), rejection (%), porosity, surface roughness (AFM), morphology (SEM) and contact angle which can significantly affect the membrane's performance. Flux values PSf membranes shows increase, 465 (pristine) to 524 (1.5wt%) LMH at 50 Psi pressure and similar enhancement was observed at 100Psi (625 to 696 LMH). Porosity also shows improvement from 73.6% to 76.84% for 15wt% PSf membranes. It was observed that membranes made of polymers such as PAN and PSF (of high w/w %) exhibits some resistance against shockwaves impact and are stable compared to other membranes. Shockwave pressure of up to 1.5 bar was sufficient enough to change properties which are crucial for performance. Membranes exposed to a maximum pressure of 5 bar completely scratched the surface and with minimum pressure of 1.5bar is optimum enough to improve the water flux and other parameters. Initial results proved that SW may be suitable alternative route to minimize/control membrane fouling and improve efficiency.

Keywords

References

  1. Amy, G. (2008), "Fundamental understanding of organic matter fouling of membranes", Desalinat., 231(1-3), 44-51. http://dx.doi.org/10.1016/j.desal.2007.11.037.
  2. Ang, W.S., Lee, S. and Elimelech, M. (2006), "Chemical and physical aspects of cleaning of organic-fouled reverse osmosis membranes", J. Membr. Sci., 272, 198-210. http://dx.doi.org/10.1016/j.memsci.2005.07.035.
  3. Arefi-Oskoui, S., Khataee, A., Safarpour, M., Orooji, Y. and Vatanpoure, V. (2019), "A review on the applications of ultrasonic technology in membrane bioreactors", Ultrasonic. Sonochem., 58, 104633-104648. http://dx.doi.org/10.1016/j.ultsonch.2019.104633.
  4. Bartman, A.R., Lyster, E., Rallo, R., Christofides, P.D. and Cohen, Y (2011), "Mineral scale monitoring for reverse osmosis desalination via real-time membrane surface image analysis", Desalinat., 273, 64-71. http://dx.doi.org/10.1016/j.desal.2010.10.021.
  5. Cen, J., Vukas, M., Barton, G., Kavanagh, J. and Coster, H.G.L. (2015), "Real time fouling monitoring with electrical impedance spectroscopy", J. Membr. Sci., 484, 133-139. http://dx.doi.org/10.1016/j.memsci.2015.03.014.
  6. Chintoo, S.K. (2014), Shockwaves Made Simple, Wiley, India.
  7. Choi, W., Chan, E.P., Park, J.H., Ahn, W.G., Jung, H.W., Hong, S., Lee, J.S., Han, J.Y., Park, S., Ko, D.H. and Lee, J.H. (2016), "Nanoscale pillar-enhanced tribological surfaces as antifouling membranes", ACS Appl. Mater. Interf., 8(45), 31433-31441. http://dx.doi.org/10.1021/acsami.6b10875.
  8. Cioanta (2017), United States Patent Application Publication, US. 2017/0057844A1.
  9. Clemence, C., Christophe, S., Patrick, S., Franz, C. and Philippe, M. (2018), "Air backwash efficiency on organic fouling of UF membranes applied to shellfish hatchery effluents", Membran. (Basel), 8(3), 48. http://dx.doi.org/10.3390/membranes8030048.
  10. Creber, S.A., Pintelon, T.R.R., Von Der Schulenburg, D.G., Vrouwenvelder, J.S., Van Loosdrecht, M.C.M. and Johns, M.L. (2010), "Magnetic resonance imaging and 3D simulation studies of biofilm accumulation and cleaning on reverse osmosis membranes", Food Bioprod. Process., 88, 401-408. http://dx.doi.org/10.1016/j.fbp.2010.08.010.
  11. Creber, S.A., Vrouwenvelder, J.S., van Loosdrecht, M.C.M. and Johns, M.L. (2010b). "Chemical cleaning of biofouling in reverse osmosis membranes evaluated using magnetic resonance imaging", J. Membr. Sci., 362, 202-210. http://dx.doi.org/10.1016/j.memsci.2010.06.052.
  12. Edwin, Z. and Brian, R. (2007), "Evaluation of different cleaning agents used for cleaning ultrafiltration membranes fouled by surface water", J. Membr. Sci., 304(1-2), 40-49. http://dx.doi.org/10.1016/j.memsci.2007.06.041.
  13. Eric, M.V., Seungkwan, H. and Menachem, E. (2001), "Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes". J. Membr. Sci., 188, 115-128. http://dx.doi.org/10.1016/S0376-7388(01)00376-3.
  14. Fangang, M., Shaoqing, Z., Yoontaek, O., Zhongbo, Z., Hang-Sik, S. and So-Ryong, C. (2017), "Fouling in membrane bioreactors: An updated review", Water Res., 114, 151-180. http://dx.doi.org/10.1016/j.watres.2017.02.006.
  15. Filloux, E., Wang, J., Pidou, M., Gernjak, W. and Yuan, Z. (2015), "Biofouling and scaling control of reverse osmosis membrane using one-step cleaning-potential of acidified nitrite solution as an agent", J. Membr. Sci., 495, 276-283. http://dx.doi.org/10.1016/j.memsci.2015.08.034.
  16. Garcia-Fayos, B., Arnal, J.M., Gimenez, A., Alvarez-Blanco, S. and Sancho, M. (2015), "Static cleaning tests as the first step to optimize RO membranes cleaning procedure", Desalin. Water Treat., 55, 3380-3390. http://dx.doi.org/10.1080/19443994.2014.957924.
  17. Guglielmi, G., Chiarani, D., Saroj, D.P. and Andreottola, G. (2003), "Impact of chemical cleaning and air-sparging on the critical and sustainable flux in a flat sheet membrane bioreactor for municipal wastewater treatment", Water Sci. Technol., 1873-1879. http://dx.doi.org/10.2166/wst.2008.126.
  18. Haan, T.Y., Chean, L.W. and Mohammad, A.W. (2020), "Thermo-responsive antifouling study of commercial PolyCera® membranes for POME treatment", Membr. Water Treat., 11(2), 97-109. http://dx.doi.org/10.12989/mwt.2020.11.2.097.
  19. Isabelle, M., Xavier, C., Laurence, B.D., Jean-Michel, L., Pierre-Yves, S. and Daniel, L. (2001), "Effect of sonication on polymeric membranes", J. Membr. Sci., 181(2), 213-220. http://dx.doi.org/10.1016/S0376-7388(00)00534-2.
  20. Jagadeesh, R. (2008), "Fascinating world of shock waves", Resonance, 752-767. http://dx.doi.org/10.1007/s12045-008-0082-1.
  21. Katsoufidou, K., Yiantsios, S.G. and Karabelas, A.J. (2005), "A study of ultafiltration membrane fouling by humic acids and flux recovery by backwashing: Experiments and modeling", J. Membr. Sci., 266, 40-50. http://dx.doi.org/10.1016/j.memsci.2005.05.009.
  22. Kim, Y., Elimelech, M., Shon, H.K. and Hong, S. (2014), "Combined organic and colloidal fouling in forward osmosis: fouling reversibility and the role of applied pressure", J. Membr. Sci., 460, 206-212. http://dx.doi.org/10.1016/j.memsci.2014.02.038.
  23. Li, X., Li, J., Wang, J., Wang, H., Cui, C., He, B. and Zhang, H. (2014), "Direct monitoring of subcritical flux fouling in a horizontal double-end submerged hollow fiber membrane module using ultrasonic time domain reflectometry", J. Membr. Sci., 451, 226-233. http://dx.doi.org/10.1016/j.memsci.2013.09.060.
  24. Li, X., Zhang, H., Hou, Y., Gao, Y., Li, J., Guo, W. and Ngo, H.H. (2015), "In situ investigation of combined organic and colloidal fouling for nanofiltration membrane using ultrasonic time domain reflectometry", Desalinat., 362, 43-51. http://dx.doi.org/10.1016/j.desal.2015.02.005.
  25. Li, Y.S., Shi, L.C., Gao, X. and Huang, J.G. (2016), "Cleaning effects of oxalic acid under ultrasound to the used reverse osmosis membranes with an online cleaning and monitoring system", Desalinat., 390, 62-71. http://dx.doi.org/10.1016/j.desal.2016.04.008.
  26. Liu, C., Caothien, S., Hayes, J., Caohuy, T. and Otoyo, T. (2001), "Membrane chemical cleaning: From art to science", Proceedings of Membrane Technology Conference, San Antonio, TX, March.
  27. Orooji, Y., Faghih, M., Razmjoua, A., Hou, J., Moazzam, P., Emami, N., Aghababaie, M., Nourisfa, F., Chen, V. and Jin, W. (2017), "Nanostructured mesoporous carbon polyethersulfone composite ultrafiltration membrane with significantly low protein adsorption and bacterial adhesion", Carbon, 111, 689-704. http://dx.doi.org/10.1016/j.carbon.2016.10.055.
  28. Orooji, Y., Jaleh, B., Homayouni, F., Fakhri, P., Kashfi, M., Torkamany, M.J. and Yousefi, A.A. (2020), "Laser ablationassisted synthesis of poly (Vinylidene Fluoride)/Au Nanocomposites: Crystalline phase and micromechanical finite element analysis", Polym., 12(11), 2630-2642. http://dx.doi.org/10.3390/polym12112630.
  29. Orooji, Y., Liang, F., Razmjou, A., Liu, G. and Jin, W. (2018), "Preparation of anti-adhesion and bacterial destructive polymeric ultrafiltration membranes using modified mesoporous carbon", Sepn. Purific. Technol., 205, 273-283. http://dx.doi.org/10.1016/j.seppur.2018.05.006.
  30. Qasim, M., Darwish, N.N. and Mhiyo, S. (2018), "The use of ultrasound to mitigate membrane fouling in desalination and water treatment", Desalinati., 443, 143-164. http://dx.doi.org/10.1016/j.desal.2018.04.007.
  31. Qian, M.B.Y. (2013), "Nanomaterials for membrane fouling control: Accomplishments and challenges", Adv. Chronic Kidney Disease, 20(6), 536-55. http://dx.doi.org/10.1053/j.ackd.2013.08.005.
  32. Qianqian, C., Zhiyu, L., Xiaolong, L. and Zhong, M. (2017), "Study on the mechanical lifting process for membrane fouling control", Sepn. Sci. Technol., 52(3), 2641-2648. http://dx.doi.org/10.1080/01496395.2017.1365903.
  33. Reddy, K.P.J. and Sharath, N. (2013), "Manually operated piston-driven shock-tube", Current Sci., 104(2), 172-176. http://dx.doi.org/10.1007/978-3-642-25688-2_86
  34. Shanxue, J., Yuening, L., Bradle, P. and Ladewig, L (2017), "A review of reverse osmosis membrane fouling and control strategies", Sci. Total Environ., 595, 567-583. http://dx.doi.org/10.1016/j.scitotenv.2017.03.235.
  35. Shen, X., Zhao, Y., Feng, X., Bi, S., Ding, W. and Chen, L. (2013), "Improved antifouling properties of PVDF membranes modified with oppositely charged copolymer", Biofouling, 29(3), 331-343. http://dx.doi.org/10.1080/08927014.2013.772142.
  36. Wang, Z., Ma, J., Tang, C.Y., Kimura, K. and Wang, Q. (2014), "Membrane cleaning in membrane bioreactors: A review", J. Membr. Sci., 468, 276-307. http://dx.doi.org/10.1016/j.memsci.2014.05.060.
  37. Wenshan, G., Hao-Huu, N. and Jianxin, L. (2012), "A mini-review on membrane fouling", Bioresour. Technol., 122, 27-34. http://dx.doi.org/10.1016/j.biortech.2012.04.089.
  38. Zakariah, Y., Norhaliza, A.W. and Shafishuhaza, S. (2016), "Fouling control strategy for submerged membrane bioreactor filtration processes using aeration airflow, backwash, and relaxation: a review", Desalin. Water Treat., 57(38), 17683-17695. http://dx.doi.org/10.1080/19443994.2015.1086893.