References
- Calabro, F. (2017), "Modeling the effects of material chemistry on water flow enhancement in nanotube membranes", MRS Bull., 42, 289-293. https://doi.org/0.1557/mrs.2017.58. https://doi.org/10.1557/mrs.2017.58
- Calabro, F., Lee, K.P. and Mattia, D. (2013), "Modeling flow enhancement in nanochannels: Viscosity and slippage", Appl. Math. Lett., 26, 991-994. https://doi.org/10.1016/j.aml.2013.05.004.
- Ghoufi, A., Szymczyk, A. and Malfreyt, P. (2016), "Ultrafast diffusion of ionic liquids confined in carbon nanotubes", Sci. Rep., 6, 28518. https://doi.org/10.1038/srep28518.
- Koklu, A., Li, J., Sengor, S. and Beskok, A. (2017), "Pressure-driven water flow through hydrophilic alumina nanomembranes", Microfluid. Nanofluid., 21, 124-135. https://doi.org/10.1007/s10404-017-1960-1.
- Liu, C. and Li, Z. (2011), "On the validity of the Navier-Stokes equations for nanoscale liquid flows: The role of channel size", AIP Adv., 1, 032108. https://doi.org/10.1063/1.3621858.
- Majumder, M., Chopra, N., Andrews, R. and Hinds, B. J. (2005), "Enhanced flow in carbon nanotubes", Nature, 438, 44. https://doi.org/10.1038/438044a.
- Mattia, D. and Calabro, F. (2012), "Explaining high flow rate of water in carbon nanotubes via solid-liquid molecular interactions", Microfluid. Nanofluid., 13, 125-130. https://doi.org/10.1007/s10404-012-0949-z.
- Mattia, D., Lee, K.P. and Calabro', F. (2014), "Water permeation in carbon nanotube membranes", Current Opinion Chem. Eng., 4, 32-37. https://doi.org/10.1016/j.coche.2014.01.006.
- Myers, T.G. (2011), "Why are slip lengths so large in carbon nanotubes?", Microfluid. Nanofluid., 10, 1141-1145. https://doi.org/10.1007/s10404-010-0752-7.
- Ritos, K., Mattia, D., Calabro, F. and Reese, J. M. (2014), "Flow enhancement in nanotubes of different materials and lengths", J. Chem. Phys., 140, 014702. https://doi.org/10.1063/1.4846300.
- Sofos, F., Karakasidis, T.E. and Liakopoulos, A. (2015), "Fluid structure and system dynamics in nanodevices for water desalination", Desalin. Water Treat., 55, 1-11. https://doi.org/10.1080/19443994.2015.1049966.
- Tang, Z.P. and Zhang, Y.B. (2020), "Critical multiscale flow for interfacial slippage in microchannel", Front. Heat Mass Transf., 14, 26. http://dx.doi.org/10.5098/hmt.14.26.
- Thomas, J.A. and Mcgaughey, A.J.H. (2008), "Reassessing fast water transport through carbon nanotubes", Nano Lett., 8, 2788-2793. https://doi.org/10.1021/nl8013617.
- Whitby, M. and Quirke, N. (2007), "Fluid flow in carbon nanotubes and nanopipes", Nature Nanotech., 2, 87-94. https://doi.org/10.1038/nnano.2006.175.
- Zhang, Y.B. (2014), "Review of hydrodynamic lubrication with interfacial slippage", J. Balkan Trib. Assoc., 20, 522-538.
- Zhang, Y.B. (2016), "The flow equation for a nanoscale fluid flow", Int. J. Heat Mass Transf., 92, 1004-1008. https://doi.org/10.1016/j.ijheatmasstransfer.2015.09.008.
- Zhang, Y.B. (2019a), "Power loss in multiscale mass transfer", Front. Heat Mass Transf., 13, 22. http://dx.doi.org/10.5098/hmt.13.22.
- Zhang, Y.B. (2019b), "Influence of the fluid-wall interaction on multiscale flow through a micro slit pore considering the adsorbed layer-fluid interfacial slippage", Front. Heat Mass Transf., 13, 27. http://dx.doi.org/10.5098/hmt.13.27.
- Zhang, Y.B. (2020), "Modeling of flow in a micro cylindrical tube with the adsorbed layer effect: Part II-Results for interfacial slippage", Int. J. Heat Mass Transf. (submitted)