DOI QR코드

DOI QR Code

Application of cherry laurel seeds activated carbon as a new adsorbent for Cr(VI) removal

  • Ozturk, Nurcan (Department of Civil Engineering, Faculty of Technology, Karadeniz Technical University) ;
  • Yazar, Murat (Department of Pharmacy Services, Macka Vocational School, Karadeniz Technical University) ;
  • Gundogdu, Ali (Department of Pharmacy Services, Macka Vocational School, Karadeniz Technical University) ;
  • Duran, Celal (Department of Chemistry, Faculty of Science, Karadeniz Technical University) ;
  • Senturk, Hasan Basri (Department of Chemistry, Faculty of Science, Karadeniz Technical University) ;
  • Soylak, Mustafa (Department of Chemistry, Faculty of Science, Erciyes University)
  • Received : 2019.09.04
  • Accepted : 2021.01.14
  • Published : 2021.01.25

Abstract

A novel activated carbon produced from cherry laurel (Laurocerasus officinalisRoem.) seeds (CLSAC) by chemical activation with ZnCl2 was used as an adsorbent to remove Cr(VI) ions from aqueous solutions. CLSAC was characterized by several techniques and the adsorption experiments were performed in a batch model adsorption technique. The effects of various experimental parameters were investigated as a function of solution pH, contact time, initial Cr(VI) concentration, CLSAC concentration, and temperature. The monolayer adsorption capacity of CLSAC was found to be 41.67 mg g-1 for 5.0 g L-1 of CLSAC concentration and, it was concluded that CLSAC can be used as an effective adsorbent for removal of Cr(VI) from waters and wastewaters.

Keywords

References

  1. Ahmed, S.M., Zhou, B., Zhao, H., Zheng, Y.P., Wang, Y. and Xia, S. (2020), "Preparation, characterization of activated carbon fiber from luffa and its application in CVFCW for rainwater treatment", Membr. Water Treat., 11(2), 151-158. http://dx.doi.org/10.12989/mwt.2020.11.2.151.
  2. Aliakbari, Z., Younesi, H., Ghoreyshi, A.A., Bahramifar, N. and Heidari, A. (2017), "Sewage sludge-based activated carbon: Its application for hexavalent chromium from synthetic and electroplating wastewater in batch and fixed-bed column adsorption", Desalin. Water Treat., 93, 61-73. https://doi.org/10.5004/dwt.2017.21477.
  3. Alidokht, L., Khataee, A.R., Reyhanitabar, A. and Oustan, S. (2011), "Reductive removal of Cr(VI) by starch-stabilized Fe0 nanoparticles in aqueous solution", Desalination, 270, 105-110. https://doi.org/10.1016/j.desal.2010.11.028.
  4. AL-Othman, Z.A., Ali, R. and Naushad, Mu. (2012), "Hexavalent chromium removal from aqueous medium by activated carbon prepared from peanut shell: Adsorption kinetics, equilibrium and thermodynamic studies", Chem. Eng. J., 184, 238-247. https://doi.org/10.1016/j.cej.2012.01.048.
  5. Ampiaw, R.E., Yaqub, M. and Lee, W. (2019), "Adsorption of microcystin onto activated carbon: A review", Membr. Water Treat., 10(6), 405-415. http://dx.doi.org/10.12989/mwt.2019.10.6.405.
  6. ASTM D4607-94(1999), Standard Test Method for Determination of Iodine Number of Activated Carbon, Annual Book of ASTM Standards, USA.
  7. Axtell, N.R., Sternberg, S.K.P. and Claussen, K. (2003), "Lead and nickel removal using Microspora and Lemna minor", Bioresour. Technol., 89, 41-48. https://doi.org/10.1016/S0960-8524(03)00034-8.
  8. Avila, M., Burks, T., Akhtar, F., Gothelid, M., Lansaker, P.C., Toprak, M.S., Muhammed, M. and Uheid, A. (2014), "Surface functionalized nanofibers for the removal of chromium (VI) from aqueous solutions", Chem. Eng. J., 245, 201-209. https://doi.org/10.1016/j.cej.2014.02.034.
  9. Bayazit, S.S. and Kerkez, O. (2014), "Hexavalent chromium adsorption on superparamagnetic multi-wall carbon nanotubes and activated carbon composites", Chem. Eng. Res.Design, 92, 2725-2733. https://doi.org/10.1016/j.cherd.2014.02.007.
  10. Benefield, L.D., Judkins, J.P. and Wend, B.L. (1982), Process Chemistry for Water and Wastewater Treatment, Prentice Hall, Englewood Cliffs, NJ, USA.
  11. Bhattacharya, A.K., Naiya, T.K., Mandal, S.N. and Das, S.K. (2008), "Adsorption, kinetics and equilibrium studies on removal of Cr (VI) from aqueous solutions using different lowcost adsorbents", Chem. Eng. J., 137, 529-541. https://doi.org/10.1016/j.cej.2007.05.021.
  12. Bhaumik, M., Maity, A., Srinivasu, V. and Onyango, M. (2011), "Enhanced removal of Cr(VI) from aqueous solution using polypyrrole/Fe3O4 magnetic nanocomposite", J. Hazard. Mater., 190, 381-390. https://doi.org/10.1016/j.jhazmat.2011.03.062.
  13. Burks, T., Avila, M., Akhtar, F., Gothelid, M., Lansaker, P.C., Toprak, M.S., Muhammed, M. and Uheid, A. (2014), "Studies on the adsorption of chromium (VI) onto 3-Mercaptopropionic acid coated superparamagnetic iron oxide nanoparticles", J. Colloid Interface Sci., 425, 36-43. https://doi.org/10.1016/j.jcis.2014.03.025.
  14. Chen, H., Yan, T. and Jiang, F. (2014), "Adsorption of Cr(VI) from aqueous solution on mesoporous carbon nitride", J. Taiwan Inst. Chem. Eng., 45, 1842-1849. https://doi.org/10.1016/j.jtice.2014.03.005.
  15. Cui, L., Meng, Q., Zheng, J., Wei, X. and Ye, Z. (2013), "Adsorption of Cr(VI) on 1,2- ethylenediamine-aminated macroporous polystyrene particles", Vacuum, 89, 1-6. https://doi.org/10.1016/j.vacuum.2012.08.012.
  16. Cui, Y. and Atkinson, J.D. (2017), "Tailored activated carbon from glycerol: Role of acid dehydrator on physiochemical characteristics and adsorption performance", J. Mater. Chem. A., 5(32), 16812-16821. https://doi.org/10.1039/C7TA02898A.
  17. Das, C., Patel, P. De, S. and DasGupta, S. (2006), "Treatment of tanning effluent using nanofiltration followed by reverse osmosis", Sep. Purif. Technol., 50, 291-299. https://doi.org/10.1016/j.seppur.2005.11.034.
  18. Deng, H., Yang, L., Tao, G. and Dai, J. (2009), "Preparation and characterization of activated carbon from cotton stalk by microwave assisted chemical activation - application in methylene blue adsorption from aqueous solution", J. Hazard. Mater., 166, 1514-1521. https://doi.org/10.1016/j.jhazmat.2008.12.080.
  19. Department of Health and Human Services. (1991), "Toxicological Profile for Chromium, Public Health Services Agency for Toxic substances and Diseases Registry", Washington, DC, USA.
  20. Di Natale, F., Lancia, A., Molino, A. and Musmarra, D. (2007), "Removal of chromium ions from aqueous solutions by adsorption on activated carbon and char", J. Hazard. Mater., 145, 381-390. https://doi.org/10.1016/j.jhazmat.2006.11.028.
  21. Duran, C., Ozdes, D., Gundogdu, A., Imamoglu, M. and Senturk, H.B. (2011), "Tea-industry waste activated carbon, as a novel adsorbent, for separation, preconcentration and speciation of chromium", Anal. Chim. Acta, 688, 75-83. https://doi:10.1016/j.aca.2010.12.029.
  22. Elmastas, M., Genc, N., Demirtas, I., Aksit, H. and Aboul-Enien, H.Y. (2013), "Isolation and Identification of Functional Components in Seed of Cherry Laurel (Laurocerasus officinalis Roem.) and Investigation of Their Antioxidant Capacity", J. Biolo. Acti. Prod. Nat., 3(2), 115-120. https://doi.org/10.1080/22311866.2013.817736.
  23. Enniya, I., Rghioui, L. and Jourani, A. (2018) "Adsorption of hexavalent chromium in aqueous solution on activated carbon prepared from apple peels", Sustain. Chem. Phar., 7, 9-16. https://doi.org/10.1016/j.scp.2017.11.003.
  24. Fierro, V., Torne-Fernandez, V., Montane, D. and Celzard, A. (2008), "Adsorption of phenol onto activated carbons having different textural and surface properties", Micropor. Mesopor. Mater., 111, 276-284. https://doi.org/10.1016/j.micromeso.2007.08.002.
  25. Fraser, G., Pritzker, M.D. and Legge, R.L. (1994), "Development of liquid membrane pertraction for the removal and recovery of chromium from aqueous effluents", Sep. Sci. Technol., 29, 2097-2116. https://doi.org/10.1080/01496399408002192.
  26. Gode, F. and Pehlivan, E. (2005), "Removal of Cr(VI) from aqueous solution by two Lewatitanion exchange resins", J. Hazard. Mater., B 119, 175-182. https://doi.org/10.1016/j.jhazmat.2004.12.004.
  27. Gupta, V.K., Rastogi, A. and Nayak, A. (2010), "Adsorption studies on the removal of hexavalent chromium from aqueous solution using a low cost fertilizer industry waste material", J. Colloid Inter. Sci., 342, 135-141. https://doi.org/10.1016/j.jcis.2009.09.065.
  28. Hajeeth, T., Sudha, P.N., Vijayalakshmi, K. and Gomathi, T. (2014), "Sorption studies on Cr (VI) removal from aqueous solution using cellulose grafted with acrylonitrile monomer", Int. J. Biol. Macromol., 66, 295-301. https://doi.org/10.1016/j.ijbiomac.2014.02.027.
  29. Hizal, J. and Apak, R. (2006), "Modeling of cadmium(II) adsorption on kaolinite-based clays in the absense and presence of humic acid", Appl. Clay Sci., 32, 232-244. https://doi.org/10.1016/j.clay.2006.02.002.
  30. Jung, C., Heo, J., Han, J., Her, N., Lee, S.J., Oh, J., Ryu, J. and Yoon, Y. (2013), "Hexavalent chromium removal by various adsorbents: Powdered activated carbon, chitosan, and single/multi-walled carbon nanotubes", Sep. Purif. Technol., 106, 63-71. https://doi.org/10.1016/j.seppur.2012.12.028.
  31. Karthik, R. and Meenakshi, S. (2014), "Adsorption study on removal of Cr(VI) ions by polyaniline composite", Desalin. Water Treat., 1-11. https://doi.org/10.1080/19443994.2014.909330.
  32. Karthikeyan, T., Rajgopal, S. and Miranda, L.R. (2005), "Chromium (VI) Adsorption from Aqueous Solution by Hevea Brasilinesis Sawdust Activated Carbon", J. Hazard. Mater., 124, 192-199. https://doi.org/10.1016/j.jhazmat.2005.05.003.
  33. Khalilia, N.R., Campbella, M., Sandib, G. and Golas, J. (2000), "Production of micro- andmesoporous activated carbon from paper mill sludge I. Effect of zinc chlorideactivation", Carbon, 38, 1905-1915. https://doi.org/10.1016/S0008-6223(00)00043-9.
  34. Kumar, A. and Jena, H.M. (2017), "Adsorption of Cr(VI) from aqueous solution by prepared high surface area activated carbon from Fox nutshell by chemical activation with H3PO4", J. Environ. Chem. Eng., 5(2), 2032-2041. https://doi.org/10.1016/j.jece.2017.03.035.
  35. Kumar, R., Ehsan, M. and Barakat, M.A. (2014), "Synthesis and characterization of carbon/AlOOH composite for adsorption of chromium(VI) from synthetic wastewater", J. Ind. Eng. Chem., 20, 4202-4206. https://doi.org/10.1016/j.jiec.2014.01.021.
  36. Lakshmipathiraj, P., Raju, G.B., Basariya, M.R., Parvathy, S. and Prabhakar, S. (2008), "Removal of Cr(VI) by electrochemical reduction", Sep. Purif. Technol., 60, 96-102. https://doi.org/10.1016/j.seppur.2007.07.053.
  37. Levankumar, L., Muthukumaran, V. and Gobinath, M.B. (2009), "Batch adsorption and kinetics of chromium (VI) removal from aqueous solutions by Ocimum americanum L. seed pods", J. Hazard. Mater., 161, 709-13. https://doi.org/10.1016/j.jhazmat.2008.04.031.
  38. Li, H., Gao, P., Cui, J., Zhang, F., Wang, F. and Cheng, J. (2018), "Preparation and Cr(VI) removal performance of corncob activated carbon", Environ. Sci. Pollut. Res., 25(21), 20743-20755. https://doi.org/10.1007/s11356-018-2026-y.
  39. Mestre, A.S., Pires, J., Nogueria, J.M.F. and Carvalho, A.P. (2007), "Activated carbons for the adsorption of ibuprofen", Carbon, 45, 1979-1988. https://doi.org/10.1016/j.carbon.2007.06.005.
  40. Mohanty, K., Jha, M., Meikap, B.C. and Biswas, M.N. (2005), "Removal of chromium (VI) from dilute aqueous solutions by activated carbon developed from Terminalia arjuna nuts activated with zinc chloride", Chem. Eng. Sci., 60, 3049-3059. https://doi.org/10.1016/j.ces.2004.12.049.
  41. Morisset, P., Oswald, J.W., Draper, C.R., Pinner, R. and Ehrhardt, R.A. (1955), "Chromium plating", J. Electrochem. Soc., 102, 143C-144C. https://doi.org/10.1149/1.2430046.
  42. Norouzi, S., Heidari, M., Alipour, V., Rahmanian, O., Fazlzadeh, M., Mohammadi-moghadam, F., Nourmoradi, H., Goudarzi, B. and Dindarloo, K. (2018), "Preparation, characterization and Cr(VI) adsorption evaluation of NaOH-activated carbon produced from Date Press Cake; an agro-industrial waste", Bioresour. Technol., 258, 48-56. https://doi.org/10.1016/j.biortech.2018.02.106.
  43. Olad, A. and Farshi Azhar, F. (2014), "A study on the adsorption of chromium (VI) from aqueous solutions on the alginatemontmorillonite/polyaniline nanocomposite", Desalin. Water Treat., 52, 2548-2559. https://doi.org/10.1080/19443994.2013.794711.
  44. Park, S.J. and Jang, Y.S. (2002), "Pore structure and surface properties of chemically modified activated carbons for adsorption mechanism and rate of Cr(VI)", J. Colloid Interface Sci., 249, 458-463. https://doi.org/10.1006/jcis.2002.8269.
  45. Rao, R.A.K., Ikram, S. and Uddin, M.K. (2014), "Removal of Cr(VI) from aqueous solution on seeds of Artimisia absinthium (novel plant material)", Desalin. Water Treat., 1-14. https://doi.org/10.1080/19443994.2014.908147.
  46. Sardohan, T., Kir, E., Gulec, A. and Cengeloglu, Y. (2010), "Removal of Cr(III) and Cr(VI) through the plasma modified and unmodified ion-exchange membranes", Sep. Purif. Technol., 74, 14-20. https://doi.org/10.1016/j.seppur.2010.05.001.
  47. Shanmugalingam, A. and Murugesan, A. (2018), "Removal of Hexavalent Chromium by Adsorption on Microwave Assisted Activated Carbon Prepared from Stems of Leucas Aspera", Zeitschrift fur Physikalische Chemie., 232 (4), 489-506. https://doi.org/10.1515/zpch-2017-0998.
  48. Singha, B. and Das, S.K. (2011). Biosorption of Cr(VI) ions from aqueous solutions: Kinetics, equilibrium, thermodynamics and desorption studies. Colloid Surface B, 84, 221-232. https://doi.org/10.1016/j.colsurfb.2011.01.004.
  49. Srivastava, V.C., Mall, I.D. and Mishra, I.M., (2008), "Removal of cadmium(II) and zinc(II) metal ions from binary aqueous solution by rice husk ash", Coll. Surf. A, 312, 172-184. https://doi.org/10.1016/j.colsurfa.2007.06.048.
  50. Suganya, S. and Senthil Kumar, P. (2018), "Influence of ultrasonic waves on preparation of active carbon from coffee waste for the reclamation of effluents containing Cr(VI) ions", J. Indust. Eng. Chem., 60, 418-430. https://doi.org/10.1016/j.jiec.2017.11.029.
  51. Toprak, A. (2020), "Production and characterization of microporous activated carbon from cherry laurel (Prunus laurocrasus L.) stone: application of H2 and CH4 adsorption", Biomass Conv. Bioref., 10, 977-986. https://doi.org/10.1007/s13399-019-00431-3.
  52. Vanderheyden, S.R.H., Vanreppelen, K., Yperman, J., Carleer, R. and Schreurs, S. (2018), "Chromium(VI) removal using in-situ nitrogenized activated carbon prepared from Brewers' spent grain", Adsorption, 24(2), 147-156. https://doi.org/10.1007/s10450-017-9929-7.
  53. Vasudevan, S., Lakshmi, J. and Vanathi, R. (2010), "Electrochemical coagulation for chromium removal: Process optimization, kinetics, isotherm and sludge characterization", Clean, 38, 9-16. https://doi.org/10.1002/clen.200900169.
  54. Wang, P., Zhang, R. and Hua, C. (2013), "Removal of chromium (VI) from aqueous solutions using activated carbon prepared from crofton weed", Des.Water Treat., 51, 2327-2335. https://doi.org/10.1080/19443994.2012.735402.
  55. Wang, Y.-N., Liu, Q., Shu, L., Miao, M.-S., Liu, Y.-Z. and Kong, Q. (2016), "Removal of Cr(VI) from aqueous solution using Femodified activated carbon prepared from luffa sponge: kinetic, thermodynamic, and isotherm studies", Desalin. Water Treat., 57(60), 29467-29478. https://doi.org/10.1080/19443994.2016.1185745.
  56. Xu, S., Liao, W., Zheng, P. and Fan, Y. (2018), "Optimization of H2O2 Modification Conditions of Bamboo-based Activated Carbon by Response Surface Methodology", IOP Conference Series: Earth and Environmental Science., 146 (1), 1-7. https://doi.org/10.1088/1755-1315/146/1/012073.
  57. Yao, W., Rao, P., Du, Y., Zhang, W. and Liu, T. (2014), "Synthesis of magnetic silica with quaternary ammonium salt and its application for chromium (VI) removal", Desalin. Water Treat., 1-10. https://doi.org/10.1080/19443994.2014.911115.
  58. Yuan, P., Liu, D., Fan, M., Yang, D., Zhu, R., Ge, F., Zhu, J. and He, H. (2010), "Removal of hexavalent chromium [Cr(VI)] from aqueous solutions by the diatomitesupported/unsupported magnetite nanoparticles", J. Hazard. Mater., 173, 614-621. https://doi.org/10.1016/j.jhazmat.2009.08.129.
  59. Yuan, Z., Xu, Z., Zhang, D., Chen, W., Huang, Y., Zhang, T., Tian, D., Deng, H., Zhou, Y. and Sun, Z. (2018), "Mesoporous activated carbons synthesized by pyrolysis of waste polyester textiles mixed with Mg-containing compounds and their Cr(VI) adsorption", Coll. Surf. A: Physicochem. Eng. Asp., 549, 86-93. https://doi.org/10.1016/j.colsurfa.2018.04.008.
  60. Zhang, Y., Tang, Q., Chen, S., Gu, F. and Li, Z. (2018), "Heavy metal adsorption of a novel membrane material derived from senescent leaves: Kinetics, equilibrium and thermodynamic studies", Membr. Water Treat., 9(2), 95-104. https://doi.org/10.12989/mwt.2018.9.2.095.

Cited by

  1. Green and Ecofriendly Biochar Preparation from Pumpkin Peel and Its Usage as an Adsorbent for Methylene Blue Removal from Aqueous Solutions vol.232, pp.11, 2021, https://doi.org/10.1007/s11270-021-05411-w