DOI QR코드

DOI QR Code

trans-Cinnamaldehyde-Induced Apoptosis in AGS Cells

AGS 세포주에서 트랜스 신남알데하이드의 세포 사멸 유도

  • Lee, Sunyi (College of Pharmacy, Duksung Women's University) ;
  • Jung, Joohee (College of Pharmacy, Duksung Women's University)
  • Received : 2021.01.20
  • Accepted : 2021.02.01
  • Published : 2021.02.28

Abstract

trans-Cinnamaldehyde (TCA), as one of the active ingredients in cinnamon, has been reported to have antiviral, antibacterial and antifungal effects as well as anti-cancer effects in several cancer cell lines. However, reports of TCA in gastric cancer are rare, and its mechanism is unclear. In this study, we investigated the anti-proliferative effect of TCA and its mechanism in gastric cancer AGS cells. TCA dose-dependently inhibited the cell viability of AGS cells. Our results suggested that TCA induces apoptosis through changes in cell morphology. To elucidate its mechanism, we investigated the expression level of apoptosis-related proteins. TCA induced the expression of p53 and Bax proteins, and then increased the cleaved caspase 9 and cleaved PARP. These results indicated that TCA triggers apoptosis via p53 pathway in AGS cells. Our results suggested that TCA might be a new anticancer drug candidate for gastric cancer.

트랜스 신남알데하이드(TCA)는 계피의 활성성분 중 하나로 알려져 있으며, 항바이러스, 항균, 항진균 뿐 아니라 일부 암세포주에서 항암 작용이 있다고 보고된 바 있다. 하지만, 위암세포주에서의 보고는 미비하며 그 작용기전에 대해서는 밝혀진 바가 없다. 본 연구에서는 위암 AGS 세포주에 대한 증식 억제작용 및 그 기전을 살펴보았다. TCA는 농도의존적으로 AGS 세포의 생존율을 억제하였다. AGS 세포 형태로 보아 TCA에 의한 세포사멸을 확인할 수 있었다. 그 기전을 확인하기 위하여, 세포사멸 관련 단백질의 발현양을 조사한 결과, TCA는 p53과 Bax의 단백질 발현을 증가시켰다. 또한, 분절된 caspase 9 및 PARP의 발현이 증가되는 것으로부터 TCA가 AGS 세포주의 세포사멸을 유도하였음을 알 수 있었다. 본 연구결과로부터 TCA가 위암에 대한 항암 활성이 있음을 확인하였으며, 추후 지속적인 연구를 통해 항암제 후보물질로 기대된다.

Keywords

References

  1. Bertuccio, P., Chatenoud, L., Levi, F., Praud, D., Ferlay, J., Negri, E., Malvezzi, M., La Vecchia, C., Recent patterns in gastric cancer: a global overview. Int. J. Cancer, 125, 666-673 (2009). https://doi.org/10.1002/ijc.24290
  2. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A., Jemal, A., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA-Cancer J. Clin., 68, 394-424 (2018). https://doi.org/10.3322/caac.21492
  3. Orditura, M., Galizia, G., Sforza, V., Gambardella, V., Fabozzi, A., Laterza, M.M., Andreozzi, F., Ventriglia, J., Savastano, B., Mabilia, A., Lieto, E., Ciardiello, F., De Vita, F., Treatment of gastric cancer. World J. Gastroenterol., 20, 1635-1649 (2014). https://doi.org/10.3748/wjg.v20.i7.1635
  4. Salehifar, E., Avan, R., Janbabaei, G., Mousavi, S.K., Faramarzi, F., Comparison the incidence and severity of side effects profile of FOLFOX and DCF regimens in gastric cancer patients. Iran. J. Pharm. Res., 18, 1032-1039 (2019).
  5. Chiang, Y.F., Chen, H.Y., Huang, K.C., Lin, P.H., Hsia, S.M., Dietary antioxidant trans-cinnamaldehyde reduced visfatin-induced breast cancer progression: in vivo and in vitro study. Antioxidants (Basel), 8, 625 (2019). https://doi.org/10.3390/antiox8120625
  6. Rao, P.V., Gan, S.H., Cinnamon: a multifaceted medicinal plant. Evid.-based Complement. Alternat. Med., 2014, 642942 (2014).
  7. Ali, S.M., Khan, A.A., Ahmed, I., Musaddiq, M., Ahmed, K.S., Polasa, H., Rao, L.V., Habibullah, C.M., Sechi, L.A., Ahmed, N., Antimicrobial activities of Eugenol and Cinnamaldehyde against the human gastric pathogen Helicobacter pylori. Ann. Clin. Microbiol. Antimicrob., 4, 20 (2005). https://doi.org/10.1186/1476-0711-4-20
  8. Chuang, L.Y., Guh, J.Y., Chao, L.K., Lu, Y.C., Hwang, J.Y., Yang, Y.L., Cheng, T.H., Yang, W.Y., Chien, Y.J., Huang, J.S., Anti-proliferative effects of cinnamaldehyde on human hepatoma cell lines. Food Chem., 133, 1603-1610 (2012). https://doi.org/10.1016/j.foodchem.2012.02.059
  9. Wu, C., Zhuang, Y., Jiang, S., Tian, F., Teng, Y., Chen, X., Zheng, P., Liu, S., Zhou, J., Wu, J., Wang, R., Zou, X., Cinnamaldehyde induces apoptosis and reverses epithelial-mesenchymal transition through inhibition of Wnt/β-catenin pathway in non-small cell lung cancer. Int. J. Biochem. Cell Biol., 84, 58-74 (2017). https://doi.org/10.1016/j.biocel.2017.01.005
  10. Li, J., Teng, Y., Liu, S., Wang, Z., Chen, Y., Zhang, Y., Xi, S., Xu, S., Wang, R., Zou, X., Cinnamaldehyde affects the biological behavior of human colorectal cancer cells and induces apoptosis via inhibition of the PI3K/Akt signaling pathway. Oncol. Rep., 35, 1501-1510 (2016). https://doi.org/10.3892/or.2015.4493
  11. Milani, A., Rashidi, S., Mahmoudi, R., Douna, B., Cytotoxic activity of epigallocatechin and trans-cinnamaldehyde in gastric cancer cell line. Asian Pac. J. Cancer Biol., 4, 71-74 (2019). https://doi.org/10.31557/apjcb.2019.4.4.71-74
  12. Lee, S., Lee, S.K., Jung, J., Potentiating activities of chrysin in the therapeutic efficacy of 5-fluorouracil in gastric cancer cells, Oncol. Lett., 21, 24 (2021).
  13. Barranco, S.C., Townsend Jr, C.M., Quraishi, M.A., Burger, N.L., Nevill, H.C., Howell, K.H., Boerwinkle, W.R., Heterogeneous responses of an in vitro model of human stomach cancer to anticancer drugs. Invest. New Drugs, 1, 117-127 (1983). https://doi.org/10.1007/BF00172070
  14. Elmore, S., Apoptosis: a review of programmed cell death. Toxicol. Pathol. 35, 495-516 (2007). https://doi.org/10.1080/01926230701320337
  15. Lu, C.C., Chiang, J.H., Tsai, F.J., Hsu, Y.M., Juan, Y.N., Yang, J.S., Chiu, H.Y., Metformin triggers the intrinsic apoptotic response in human AGS gastric adenocarcinoma cells by activating AMPK and suppressing mTOR/AKT signaling. Int. J. Oncol., 54, 1271-1281 (2019).
  16. Burns, T.F., El-Deiry, W.S., The p53 pathway and apoptosis. J. Cell. Physiol., 181, 231-239 (1999). https://doi.org/10.1002/(SICI)1097-4652(199911)181:2<231::AID-JCP5>3.0.CO;2-L
  17. Bae, W., Lim, H.K., Kim, K.M., Cho, H., Lee S.Y., Jeong C.S., Lee H.S., Jung, J., Apoptosis-inducing activity of marine sponge Haliclona sp. extracts collected from Kosrae in nonsmall cell lung cancer A549 cells. Evid.-based Complement. Alternat. Med., 2015, 717959 (2015).
  18. Chipuk, J.E., Kuwana, T., Bouchier-Hayes, L., Droin, N.M., Newmeyer, D.D., Schuler, M., Green, D.R., Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science, 303, 1010-1014 (2004). https://doi.org/10.1126/science.1092734
  19. Yan, Z., Xu, T., An, Z., Hu, Y., Chen, W., Ma, J., Shao, C., Zhu, F., Costunolide induces mitochondria-mediated apoptosis in human gastric adenocarcinoma BGC-823. BMC Complement. Altern. Med., 19, 151 (2019). https://doi.org/10.1186/s12906-019-2569-6
  20. Deng, Y., Li, X., Li, X., Zheng, Z., Huang, W., Chen, L., Tong, Q., Ming, Y., Corilagin induces the apoptosis of hepatocellular carcinoma cells through the mitochondrial apoptotic and death receptor pathways. Oncol. Rep., 39, 2545-2552 (2018). https://doi.org/10.3892/or.2018.6396
  21. Muhammad, J.S., Zaidi, S.F., Shaharyar, S., Refaat, A., Usmanghani, K., Saiki, I., Sugiyama, T., Anti-inflammatory effect of cinnamaldehyde in Helicobacter pylori induced gastric inflammation. Biol. Pharm. Bull., 38, 109-115 (2015). https://doi.org/10.1248/bpb.b14-00609