DOI QR코드

DOI QR Code

Development of an Inverted Y-Shaped Strip for the Detection of Organophosphorus and Carbamate Residual Pesticides

유기인계 및 카바메이트계 농약 신속 검출을 위한 역 Y자 스트립의 개발

  • Lee, Jeong-Eun (Division of Applied Life Science, Graduate School, Gyeongsang National University) ;
  • Kim, Sol-A (Division of Applied Life Science, Graduate School, Gyeongsang National University) ;
  • Park, Hyun-Jin (Division of Applied Life Science, Graduate School, Gyeongsang National University) ;
  • Mun, Hyoyoung (Apteasy MJ inc., BI center) ;
  • Shim, Won-Bo (Institute of Agriculture and Life Science, Gyeongsang National University)
  • 이정은 (경상대학교 응용생명과학부) ;
  • 김솔아 (경상대학교 응용생명과학부) ;
  • 박현진 (경상대학교 응용생명과학부) ;
  • 문효영 (압티지엠제이(주)) ;
  • 심원보 (경상대학교 농업생명과학연구원)
  • Received : 2020.12.04
  • Accepted : 2021.01.07
  • Published : 2021.02.28

Abstract

The inverted Y-shaped strip detection method based on acetylcholinesterase (AChE) was developed for the rapid detection of organophosphorus and carbamate pesticides. The inactivation of AChE by organophosphorus and carbamate pesticides has been well known. The AChE catalyzes acetylthiocholine into thiocholine having (-) and (+) charges, and the (+) charge results in aggregation of gold nanoparticle (GNP). Malaoxon and carbofuran were used as standard organophosphorus and carbamate for the development of the inverted Y-shaped strip, respectively. In order to optimize the method, various angles of the Y-shaped strip, different types of nitrocellulose membrane, and concentration of AChE were tested as key parameters. The detection limit of the method was 10 ng/mL for both malaoxon and carbofuran pesticides. No cross-reaction was observed to other pesticides such as atrazine, cyanazine, simazine, bifenthrin, boscalid, metalaxyl, and chlorobenzilate. Recoveries from lettuce spiked when known concentrations of malaoxon and carbofuran were found ranging from 96.4 to 100.7% and 81 to 112.7%, respectively. This study suggests that the inverted Y-shaped strip method based on AChE may be a useful tool for the sensitive, specific, rapid detection of organophosphorus and carbamate pesticides in agricultural products.

본 연구에서는 농약의 음성시료에서는 acetylcholinesterase와 acetylthiocholine을 반응시켜 +전하와 -전하를 가지는 thiocholine으로 분해되어 금 나노입자를 응집시켜 역 Y자 스트립상에서 청자색의 반응선(띠)을 형성하고 양성 시료에서는 생성시키지 않는 원리를 이용한 신속 농약 검출법을 개발하였다. 개발한 분석법은 유기인계 농약 말라옥손과 카바메이트계 농약 카보퓨란을 각각 10 ng/mL 수준까지 검출이 가능한 것으로 확인되었으며, 2종의 유기인계와 카바메이트계 농약(EPN, dichlorvos)에 대해 추가적으로 검출 한계를 확인한 결과에서도 10 ng/mL 수준까지 모두 검출 가능함을 확인할 수 있었다. 그러나 3종의 트리아진 계열의 농약과 각 1종의 피레스로이드, 카복사마이드, 페닐아마이드 및 유기염소계열의 농약에 대해서는 반응성이 없는 것으로 확인되어 유기인계와 카바메이트계 농약 분석에 적용이 가능한 것으로 확인되었다. 마지막으로, 임의로 오염시킨 농산물 시료를 대상으로 분석법의 회수율을 확인한 결과, 말라옥손에 대해서 96.4에서100.7%, 카보퓨란은 81에서112.7%의 회수율이 확인되어 본 연구에서 개발한 역 Y자 스트립을 농약 검출법으로 이용한다면 농산물과 농업환경 중 존재하는 유기인계 및 카바메이트계 잔류농약을 신속하게 검출할 수 있을 것으로 판단된다.

Keywords

References

  1. Nam, S.M., Lee, H.R., Lee, J.M., Removal efficiency of residual pesticides during processing of Perilla Jangachi preparation. J. Korean Soc. Food Cult., 18, 562-568 (2003).
  2. Hwang, I.S., Oh, Y.J., Kwon, H.Y., Ro, J.H., Kim, D.B., Moon, B.C., Oh, M.S., Noh, H.H., Park, S.W., Choi, G.H., Ryu, S.H., Kim, B.S., Oh, K.S., Lim, C.H., Lee, H.S., Monitoring of pesticide residues concerned in stream water. Korean J. Environ. Agric., 38, 173-184 (2019). https://doi.org/10.5338/KJEA.2019.38.3.21
  3. Cho, T.S., Moon, Y.H., Recognition of fanner and urban resident on pesticide toxicity. Korean J. Pestic. Sci., 4, 48-55 (2000).
  4. Lee, S.H., Hong, Y.P., Seo, S.Y., Kim, Y.G., Choi, J.H., Identification, synthesis, and biological activities of cyclic L-prolyl-L-tyrosine. J. Korean Chem. Soc., 56, 661-664 (2012). https://doi.org/10.5012/jkcs.2012.56.5.661
  5. Turgut, C., The contamination with organochlorine pesticides and heavy metals in surface water in Kucuk Menderes River in Turkey, 2000-2002. Environ. Int., 29, 29-32 (2003). https://doi.org/10.1016/S0160-4120(02)00127-7
  6. Kim, H.Y., Park, G.H., Park, J.H., Jin, H., Kim, J.S., Eu, G.J., Cho, H.S., Kang, G., Lee, M.S., Song, B.H., Shin, J.S., Cho, M.H., Effects on EDC-like farming chemicals in aquatic organism. Korean J. Pestic. Sci., 7, 188-197 (2003).
  7. Kang, G.W., Lee, G.G., Food safety and instrumental analysis. J. Korean Soc. Food Sci. Nutr., 16, 39-41 (2011).
  8. Lee Y. D., Status of Residual Positive list System(PLS) Substances in Foods. Korean J. Environ. Agric., 29-50 (2020).
  9. Kim, M.O., Hwang, H.S., Lim, M.S., Hong, J.E., Kim, S.S., Do, J., Choi, D.M., Cho, D.H., Monitoring of residual pesticides in agricultural products by LC/MS/MS. J. Korean Soc. Food Sci. Nutr., 42, 664-675 (2010).
  10. Kim, W.S., Son, Y.W., Jeong, J.Y., An, K.A, Hong, M.K., Im, M.H., Lee, H.J., Lee, B.H., Park, H.J., Kim, B.G., Kim, Y.S., Kim, S.M., Development of simultaneous analytical method for various residual pesticides using GC-ECD. J. Environ. Health Sci., 27, 88-92 (2001).
  11. Chio, Y.H., Nam, H.S., Hong, H.M., Lee, J.H., Chae, K.R., Lee, J.O., Kim, H.Y., Yoon, S.H., Development of rapid analysis method for pesticide residues by GC-MS/MS. Korean J. Pestic. Sci., 9, 292-302 (2005).
  12. Pundir, C.S., Chauhan, N., Acetylcholinesterase inhibition-based biosensors for pesticide determination: A review. Anal. Biochem., 429, 19-31 (2012). https://doi.org/10.1016/j.ab.2012.06.025
  13. Du, D., Huang, X., Cai, J., Zhang, A., Comparison of pesticide sensitivity by electrochemical test based on acetylcholinesterase biosensor. Biosens. Bioeletron., 23, 285-289 (2007). https://doi.org/10.1016/j.bios.2007.05.002
  14. Verma, N., Bhardwaj, A., Biosensor technology for pesticides- a review. Appl. Biochem. Biotechnol., 175, 3093-3119 (2015). https://doi.org/10.1007/s12010-015-1489-2
  15. Dykman, L., Khlebtsov, N., Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem. Soc. Rev., 41, 2256-2282 (2012). https://doi.org/10.1039/C1CS15166E
  16. Wu, S.W., Yu, Y.A., Liu, B.H., Yu, F.Y., Development of a sensitive enzyme-linked immunosorbent assay and rapid gold nanoparticle immunochromatographic strip for detecting citrinin in monascus fermented food. Toxins, 10, 354 (2018). https://doi.org/10.3390/toxins10090354
  17. Jia, M., Liu, J., Zhang, J., Zhang, H. A., An immunofiltration strip method based on the photothermal effect of gold nanoparticles for the detection of Escherichia coli O157: H7. Analyst, 144, 573-578 (2019). https://doi.org/10.1039/C8AN01004H
  18. Peng, J., Wang, Y., Liu, L., Kuang, H., Li, A., Xu, C., Multiplex lateral flow immunoassay for five antibiotics detection based on gold nanoparticle aggregations. RSC Adv., 6, 7798-7805 (2016). https://doi.org/10.1039/C5RA22583C
  19. Kim, H.I., Lee, J.E., Kim, S.A., Moon, H.Y., Cho, S.R., Shim, W.B., Development of a colorimetric rapid detection method. J. Food Hyg. Saf., 34, 269-276 (2019). https://doi.org/10.13103/JFHS.2019.34.3.269
  20. Ministry of Food and Drug Safety, Analytical manual for pesticide residues in foods, 5th Ed., Korea (2017).
  21. Codex alimentarius international food standard: Guidelines on performance criteria for methods of analysis for the determination of pesticide residues in food and feed, adopted in 2017.