DOI QR코드

DOI QR Code

Viologen Based All-in-one Flexible Electrochromic Devices

바이올로진 기반의 일체형 유연 전기변색소자

  • Park, Bo-Seong (School of Energy, Materials, and Chemical Engineering, Korea University of Technology and Education) ;
  • Kim, Hyun-Jeong (School of Energy, Materials, and Chemical Engineering, Korea University of Technology and Education) ;
  • Shin, Hyeonho (School of Energy, Materials, and Chemical Engineering, Korea University of Technology and Education) ;
  • Park, Seongmin (School of Energy, Materials, and Chemical Engineering, Korea University of Technology and Education) ;
  • Lee, Jaeun (School of Energy, Materials, and Chemical Engineering, Korea University of Technology and Education) ;
  • Jeon, Sunggun (School of Energy, Materials, and Chemical Engineering, Korea University of Technology and Education) ;
  • Nah, Yoon-Chae (School of Energy, Materials, and Chemical Engineering, Korea University of Technology and Education)
  • 박보성 (한국기술교육대학교 에너지신소재화학공학부) ;
  • 김현정 (한국기술교육대학교 에너지신소재화학공학부) ;
  • 신현호 (한국기술교육대학교 에너지신소재화학공학부) ;
  • 박성민 (한국기술교육대학교 에너지신소재화학공학부) ;
  • 이재운 (한국기술교육대학교 에너지신소재화학공학부) ;
  • 전성건 (한국기술교육대학교 에너지신소재화학공학부) ;
  • 나윤채 (한국기술교육대학교 에너지신소재화학공학부)
  • Received : 2021.01.28
  • Accepted : 2021.02.04
  • Published : 2021.03.27

Abstract

Electrochromic devices (ECDs) have been drawing great attention due to their high color contrast, low power consumption, and memory effect, and can be used in smart windows, automatic dimming mirrors, and information display devices. As with other electronic devices such as LEDs (light emitting diodes), solar cells, and transistors, the mechanical flexibility of ECDs is one of the most important issue for their potential applications. In this paper, we report on flexible ECDs (f-ECDs) fabricated using an all-in-one EC gel, which is a mixture of electrolyte and EC material. The f-ECDs are compared with rigid ECDs (r-ECDs) on ITO glass substrate in terms of color contrast, coloration efficiency, and switching speed. It is confirmed that the f-ECDs embedding all-in-one gel show strong blue absorption and have competitive EC performance. Repetitive bending tests show a degradation of electrochromic performance, which must be improved using an optimized device fabrication process.

Keywords

References

  1. C. G. Granqvist, Sol. Energy Mater. Sol. Cells, 60, 201 (2000). https://doi.org/10.1016/S0927-0248(99)00088-4
  2. I. Schwendeman, R. Hickman, G. Sonmez, P. Schottland, K. Zong, D. M. Welsh and J. R. Reynolds, Chem. Mater., 14, 3118 (2002). https://doi.org/10.1021/cm020050y
  3. H. J. Lee, C. Lee, J. Song, Y. J. Yun, Y. Jun and C. S. Ah, J. Mater. Chem. C, 8, 8747 (2020). https://doi.org/10.1039/d0tc00420k
  4. T. Kamimori, J. Nagai and M. Mizuhashi, Sol. Energy Mater., 16, 27 (1987). https://doi.org/10.1016/0165-1633(87)90005-0
  5. J. W. Kim, D. K. Kwon and J. M. Myoung, Chem. Eng. J., 387, 124145 (2020). https://doi.org/10.1016/j.cej.2020.124145
  6. C. E. Patil, N. L. Tarwalbc, P. R. Jadhav, P. S. Shinde, H. P. Deshmukh, M. M. Karanjkar, A. V. Moholkarf, M. G. Gangg, J. H. Kim and P. S. Patil, Curr. Appl. Phys., 14, 389 (2014). https://doi.org/10.1016/j.cap.2013.12.014
  7. Q. Han, R. Wang, H. Zhu, M. Wan and Y. Mai, Mater. Sci. Semicond. Process., 126, 105686 (2021). https://doi.org/10.1016/j.mssp.2021.105686
  8. Z. R. Ramadhan, C. Yun, B. I. Park, S. Yu, M. H. Kang, S. Kim, D. Limf, B. H. Choi, J. W. Han and Y. H. Kim, Opt. Mater., 89, 559 (2019). https://doi.org/10.1016/j.optmat.2019.01.054
  9. K. C. Cheng, F. R. Chen and J. J. Kai, Sol. Energy Mater. Sol. Cells, 90, 1156 (2006). https://doi.org/10.1016/j.solmat.2005.07.006
  10. Y. Jung, J. Lee and Y. Tak, Electrochem. Solid-State Lett., 7, H5 (2003). https://doi.org/10.1149/1.1634083
  11. M. Da Rocha, Y. He, X. Diao and A. Rougier, Sol. Energy Mater. Sol. Cells, 177, 57 (2018). https://doi.org/10.1016/j.solmat.2017.05.070
  12. M. Pugliese, F. Bisconti, A. Rizzo, S. Colella, C. T. Prontera, G. Gigli, V. Maiorano and P. Cossari, ACS Appl. Energy Mater., 3, 10453 (2020). https://doi.org/10.1021/acsaem.0c01442
  13. T. H. Chang, H. C. Lu, M. H. Lee, S. Y. Kao and K. C. Ho, Sol. Energy Mater. Sol. Cells, 177, 75 (2018). https://doi.org/10.1016/j.solmat.2017.05.004
  14. Y. Alesanco, A.Viñuales, J. Palenzuela, I. Odriozola, G. Cabanero, J. Rodriguez and R. Tena-Zaera, ACS Appl. Mater. Interfaces, 8, 14795 (2016). https://doi.org/10.1021/acsami.6b01911
  15. H. Oh, D. G. Seo, T. Y. Yun, S. B. Lee and H. C. Moon, Org. Electron., 51, 490 (2017). https://doi.org/10.1016/j.orgel.2017.10.001
  16. J. W. Kim and J. M. Myoung, Adv. Funct. Mater., 29, 1808911 (2019). https://doi.org/10.1002/adfm.201808911
  17. S. E. Legenski, C. Xu, L. Liu, M. O. L. Guilly and M. Taya, Smart Mater. Struct., 5385, 319 (2004).
  18. E. Raphael, C. O. Avellaneda, M. A. Aegerter, M. M. Silva and A. Pawlicka, Mol. Cryst. Liq. Cryst., 554, 264 (2012). https://doi.org/10.1080/15421406.2012.634349
  19. F. Zhang, G. Dong, J. Liu, S. Ye and X. Diao, Ionics, 23, 1879 (2017). https://doi.org/10.1007/s11581-017-1996-y
  20. S. Y. Kao, C. W. Kung, H. W. Chen, C. W. Hu and K. C. Ho, Sol. Energy Mater. Sol. Cells, 145, 61 (2016). https://doi.org/10.1016/j.solmat.2015.04.012
  21. L. Ma, S. Xiao, N. Wu, S. Zhao and D. Xiao, Dyes Pigm., 168, 327 (2019). https://doi.org/10.1016/j.dyepig.2019.05.001
  22. S. Macher, M. Rumpel, M. Schott, U. Posset, G. A. Giffin and P. Lobmann, ACS Appl. Mater. Interfaces, 12, 36695 (2020). https://doi.org/10.1021/acsami.0c07860
  23. N. Kobayashi, S. Miura, M. Nishimura and Y. Goh, Electrochim. Acta, 53, 1643 (2007). https://doi.org/10.1016/j.electacta.2007.05.073
  24. S. Zhao, W. Huang, Z. Guan, B. Jin and D. Xiao, Electrochim. Acta, 298, 533 (2019). https://doi.org/10.1016/j.electacta.2018.12.135