DOI QR코드

DOI QR Code

Effect of SC-1 Cleaning to Prevent Al Diffusion for Ti Schottky Barrier Diode

Ti 쇼트키 배리어 다이오드의 Al 확산 방지를 위한 SC-1 세정 효과

  • Choi, Jinseok (Department of Advanced Materials Science and Engineering, Kumoh National Institute of Technology) ;
  • Choi, Yeo Jin (Department of Advanced Materials Science and Engineering, Kumoh National Institute of Technology) ;
  • An, Sung Jin (Department of Advanced Materials Science and Engineering, Kumoh National Institute of Technology)
  • 최진석 (금오공과대학교 신소재공학과) ;
  • 최여진 (금오공과대학교 신소재공학과) ;
  • 안성진 (금오공과대학교 신소재공학과)
  • Received : 2021.01.18
  • Accepted : 2021.01.28
  • Published : 2021.02.27

Abstract

We report the effect of Standard Clean-1 (SC-1) cleaning to remove residual Ti layers after silicidation to prevent Al diffusion into Si wafer for Ti Schottky barrier diodes (Ti-SBD). Regardless of SC-1 cleaning, the presence of oxygen atoms is confirmed by Auger electron spectroscopy (AES) depth profile analysis between Al and Ti-silicide layers. Al atoms at the interface of Ti-silicide and Si wafer are detected, when the SC-1 cleaning is not conducted after rapid thermal annealing. On the other hand, Al atoms are not found at the interface of Ti-SBD after executing SC-1 cleaning. Al diffusion into the interface between Ti-silicide and Si wafer may be caused by thermal stress at the Ti-silicide layer. The difference of the thermal expansion coefficients of Ti and Ti-silicide gives rise to thermal stress at the interface during the Al layer deposition and sintering processes. Although a longer sintering time is conducted for Ti-SBD, the Al atoms do not diffuse into the surface of the Si wafer. Therefore, the removal of the Ti layer by the SC-1 cleaning can prevent Al diffusion for Ti-SBD.

Keywords

References

  1. W. Schottky, Naturwissenschaften, 26, 843 (1938). https://doi.org/10.1007/BF01774216
  2. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3th ed., p. 134, Wiley, Newyork, USA, (2007).
  3. D. Perrone, M. Naretto, S. Ferrero, L. Scaltrito and C. F. Pirri, Mater. Sci. Forum, 615-617, 647 (2009). https://doi.org/10.4028/www.scientific.net/msf.615-617.647
  4. W. D. Bosscher, R. L. V. Meirhaeghe, P. L. Hanselaer, L. Caenepeel, W. H. Laflere and F. Cardon, Semicond. Sci. Technol., 1, 376 (1986). https://doi.org/10.1088/0268-1242/1/6/006
  5. W. D. Bosscher, R. L. V. Meirhaeghe, A. D. Laere, W. H. Laflere and F. Cardon, Solid State Electron., 31, 945 (1988). https://doi.org/10.1016/0038-1101(88)90049-4
  6. J. S. Kim, H. H. Choi, S. H. Son and S. Y. Choi, Appl. Phys. Lett., 79, 860 (2001). https://doi.org/10.1063/1.1391402
  7. W.-F. Wu, K.-C. Tsai, C.-G. Chao, J.-C. Chen and K.-L. Ou, J. Electron. Mater., 34, 1150 (2005). https://doi.org/10.1007/s11664-005-0244-9
  8. J. Y. Park, J. Y. Kim, Y. D. Kim, H. Jeon and Y. Kim, J. Korean Phys. Soc., 42, 817 (2003).
  9. C. Y. Ting and M. Wittmer, J. Appl. Phys., 54, 937 (1983). https://doi.org/10.1063/1.332018
  10. W. Kern, J. Electrochem. Soc., 137, 1887 (1990). https://doi.org/10.1149/1.2086825
  11. J. F. Jongste, O. B. Loopstra, G. C. A. M. Janssen and S. Radelaar, J. Appl. Phys., 73, 2816 (1993) https://doi.org/10.1063/1.353058