DOI QR코드

DOI QR Code

중심-동공을 갖는 원통형태 광결정 도파로의 전자장 특성 분석 및 설계 연구

A Study on the Analysis of Electromagnetic Characteristics and Design of a Cylindrical Photonic Crystal Waveguide with a Low-Index Core

  • 김정일 (충남대학교 전기.전자.통신공학교육과)
  • Kim, Jeong I. (Department of Electric, Electronic and Communication Engineering Education, Chungnam National University)
  • 투고 : 2020.12.30
  • 심사 : 2021.02.20
  • 발행 : 2021.02.28

초록

본 논문에서는 중심에 동공을 갖는 원통형태 광결정 도파로가 제안되어지고, 이 전송로의 도파 특성에 대한 분석이 수행되어진다. 여기서 동공은 일반적인 공기이거나 임의의 액체나 고체 물질들에 의한 저지수 유전체로써 형성되게 된다. 베셀 함수를 이용한 분석적 방법으로 전자장에 대한 엄밀한 해를 구하기 위하여, 행렬 기법이 고유치 방정식의 유도에 사용되고, 실효 굴절률, 분산, 전자장 분포 등의 기본 모드의 중요한 전송 성질들이 조사된다. 또한 분석 결과 정확도의 검증을 위하여 엄밀한 완전 벡터 유한 차분법을 적용해보고, 광결정 도파로의 설계와 제조 상의 문제를 해결하는데 용이하게 활용하고자 한다. 설계된 중심-동공 광도파관의 실효 모드 면적이 2.6056 ㎛2에서 5.9673 ㎛2까지 동작 파장에 따라 다양하게 변하며, 일반적으로 광도파로의 중심으로부터 바깥쪽으로 원통형의 층수가 적을수록 그리고 굴절률 n1이 약간 큰 저지수일수록 실효 면적은 작아지므로, 비선형 소자 응용의 관점에서 훨씬 더 최적화된 결과를 나타낸다.

In this paper, a cylindrical photonic crystal waveguide with a low-index core is first proposed. The core can be filled with air, liquid, or arbitrary dielectric materials. Exact analyses for the electromagnetic field characteristics of guided modes, by using appropriate Bessel functions and applying the boundary conditions, are performed to find out the guiding characteristics of the proposed waveguide. For verification and usage in design and manufacturing process, the computer-calculation of the waveguide transmission characteristics is also performed by applying the rigorous full-vectorial finite difference method. Providing variations of the effective area for the fundamental mode of the designed waveguide with different numbers of cladding layers, ranging from 2.6056 ㎛2 to 5.9673 ㎛2 over the operation wavelength, generally as the core refractive index n1 is higher, the mode area becomes smaller and the result leads to more optimistic effect for nonlinear device applications.

키워드

참고문헌

  1. P. Russell. (2003). Photonic Crystal Fibers. Science, 299, 358-362. https://doi.org/10.1126/science.1079280
  2. J. I. Kim. (2009). Investigation of Cladding Effects on Optical Guidance of Microstructured Holey Fibres Based on FDM and FDTD Methods. Journal of Modern Optics, 56(9), 1091-1095. https://doi.org/10.1080/09500340902944053
  3. A. Lavanya & G. Geetha. (2020). A Novel Hybrid Hexagonal Photonic Crystal Fibre for Optical Fibre Communication. Optical Fiber Technology, 59, 102321. https://doi.org/10.1016/j.yofte.2020.102321
  4. D. K. Sharmaa & S. M. Tripathiab. (2019). Analysis of the Beam Divergence for One-Rod Core Microstructured Optical Fibres. Opto-Electronics Review, 27(2), 224-231. https://doi.org/10.1016/j.opelre.2019.06.003
  5. A. Cucinotta, S. Selleri, L. Vincetti & M. Zoboli. (2002). Holey Fiber Analysis through the Finite-Element Method. IEEE Photonics Technology Letters, 14(11), 1530-1532. https://doi.org/10.1109/LPT.2002.803375
  6. D. K. Hwang, B. Lee & D. H. Kim. (2009). Efficiency Enhancement in Solid Dye-Sensitized Solar Cell by Three-Dimensional Photonic Crystal. RSC Advances, 3(9), 3017-3023. https://doi.org/10.1039/c2ra22746k
  7. J. Ouellette. (2002). Seeing the Future in Photonic Crystals. The Industrial Physicist, 7(6), 14-17.
  8. Centre for Photonics and Photonic Materials. (2020). [Online]. http://www.bath.ac.uk/research/centres/cppm/.
  9. G. Pickrell et al. (2004). Microstructural Analysis of Random Hole Optical Fibers. IEEE Photonics Technology Letters, 16(2), 491-493. https://doi.org/10.1109/LPT.2003.819403
  10. J. Liao & T. Huang. (2015). Highly Nonlinear Photonic Crystal Fiber with Ultrahigh Birefringence Using a Nano-Scale Slot Core. Optical Fiber Technology, 22, 107-112. https://doi.org/10.1016/j.yofte.2015.01.012
  11. H. Y. Fu et al. (2008). Pressure Sensor Realized with Polarization Maintaining Photonic Crystal Fiber-Based Sagnac Interferometer. Applied Optics, 47(15), 2835-2839. https://doi.org/10.1364/AO.47.002835
  12. J. D. Joannopoulos, R. D. Meade, J. N. Winn. (1995). Photonic Crystals: Molding the flow of lightn, New Jersey : Princeton University Press.
  13. E. Yablonovitch. (1987). Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Physical Review Letters, 58(20), 2059-2062. https://doi.org/10.1103/PhysRevLett.58.2059
  14. S. John. (1987). Strong Localization of Photons in Certain Disordered Dielectric Superlattices. Physical Review Letters, 58(23), 2486-2489. https://doi.org/10.1103/PhysRevLett.58.2486
  15. N. Blaunstein, S. Engelberg, E. Krouk & M. Sergeev. (2020). Fiber Optic and Atmospheric Optical Communication, New York : Wiley-IEEE Press.
  16. J. I. Kim. (2019). Analyses of Cylindrically-Varying Photonic Crystal Waveguides. Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology, 9(2), 795-802. https://doi.org/10.35873/AJMAHS.2019.9.2.077
  17. L. Zhang et al. (2015). Tunable Soliton Generation in a Birefringent Tellurite Microstructured Optical Fiber. IEEE Photonics Technology Letters, 27(14), 1547-1549. https://doi.org/10.1109/LPT.2015.2429735
  18. A. K. Amoah, E. K. Akowuah, G. Nukpezah, S. Haxha & H. Ademgil. (2019). A Theoretical Investigation of a Photonic Crystal Fibre with Ultra-Flattened Chromatic Dispersion with Three Zero Crossing Dispersion Wavelengths. Optical Fiber Technology, 53, 102032. https://doi.org/10.1016/j.yofte.2019.102032
  19. G. P. Agrawal. (1997). Fiber-Optic Communication Systems, New York : Wiley.