DOI QR코드

DOI QR Code

Deforming the Walking Motion with Geometrical Editing

주 관절 경로의 변형을 통한 걷기 동작 수정

  • Received : 2020.10.27
  • Accepted : 2020.12.30
  • Published : 2021.03.01

Abstract

This paper proposes a simple deformation method for editing the trajectory of a walking motion with preserving its style. To this end, our method analyzes the trajectory of the root joint into the graph and deforms it by applying the graph Laplace operator. The trajectory of the root joint is presented as a graph with a vertex defined the position and direction at each time frame on the motion dataThe graph transforms the trajectory into the differential coordinate, and if the constraints are set on the trajectory vertex, the solver iterative approaches to the solution. By modifying the root trajectory, we can continuously vary the walking motion, which reduces the cost of capturing a whole motion that is required. After computes the root trajectory, other joints are copied on the root and post-processed as a final motion. At the end of our paper, we show the application that the character continuously walks in a complex environment while satisfying user constraints.

본 논문에서는 캐릭터의 걷기 동작 데이터를 변형하는 방법을 제안한다. 이를 위하여 주 관절(root joint)의 이동 경로를 그래프로 분석하고 라플라스 연산자를 이용해 변형하는 방법을 사용한다. 주 관절의 경로는 동작 데이터의 각 프레임별 위치와 방향을 정점으로 하고 이를 인접 프레임의 정점과 연결한 그래프 형태로 나타낸다. 주 관절 경로를 라플라스 연산자를 이용하여 좌표계를 변환하고 이를 목표 위치 및 방향에 맞도록 반복적인 방법으로 해를 구하여 변형한다. 이 방법을 이용하여 동작 데이터의 걷기 스타일을 유지하면서 다양한 경로의 걷기 동작을 얻을 수 있게 되며 많은 비용이 드는 동작 데이터 취득을 최소화할 수 있다. 최종 모션은 변형된 주 관절 경로를 기준으로 기존 모션의 다른 관절을 위치시키고 후처리하여 생성한다. 본 논문에서 제안한 방법을 응용함으로써 적은 모션 데이터로도 복잡한 환경에서 캐릭터의 걷는 동작을 생성하는 것을 보인다.

Keywords

References

  1. L. Kovar, M. Gleicher, and F. Pighin, "Motion graphs," in ACM SIGGRAPH 2008 classes, 2008, pp. 1-10.
  2. D. Holden, T. Komura, and J. Saito, "Phase-functioned neural networks for character control," ACM Transactions on Graphics (TOG), vol. 36, no. 4, pp. 1-13, 2017.
  3. E. S. Ho, T. Komura, and C.-L. Tai, "Spatial relationship preserving character motion adaptation," in ACM SIGGRAPH 2010 papers, 2010, pp. 1-8.
  4. C. Kang and S.-H. Lee, "Multi-contact locomotion using a contact graph with feasibility predictors," ACM Transactions on Graphics (TOG), vol. 36, no. 4, p. 1, 2017.
  5. J. Lee and S. Y. Shin, "A hierarchical approach to interactive motion editing for human-like figures," in Proceedings of the 26th annual conference on Computer graphics and interactive techniques, 1999, pp. 39-48.
  6. M. Kim, K. Hyun, J. Kim, and J. Lee, "Synchronized multi-character motion editing," ACM transactions on graphics (TOG), vol. 28, no. 3, pp. 1-9, 2009.
  7. Y.-Y. Tsai, W.-C. Lin, K. B. Cheng, J. Lee, and T.-Y. Lee, "Real-time physics-based 3d biped character animation using an inverted pendulum model," IEEE transactions on visualization and computer graphics, vol. 16, no. 2, pp. 325-337, 2009. https://doi.org/10.1109/TVCG.2009.76
  8. J. Lee, J. Chai, P. S. Reitsma, J. K. Hodgins, and N. S. Pollard, "Interactive control of avatars animated with human motion data," in Proceedings of the 29th annual conference on Computer graphics and interactive techniques, 2002, pp. 491-500.
  9. H. J. Shin and H. S. Oh, "Fat graphs: constructing an interactive character with continuous controls," in Proceedings of the 2006 ACM SIGGRAPH/Eurographics symposium on Computer animation. Eurographics Association, 2006, pp. 291-298.
  10. A. Safonova and J. K. Hodgins, "Construction and optimal search of interpolated motion graphs," in ACM SIGGRAPH 2007 papers, 2007, pp. 106-es.
  11. S. Levine, J. M. Wang, A. Haraux, Z. Popovic, and V. Koltun, "Continuous character control with low-dimensional embeddings," ACM Transactions on Graphics (TOG), vol. 31, no. 4, pp. 1-10, 2012.
  12. K. Lee, S. Lee, and J. Lee, "Interactive character animation by learning multi-objective control," ACM Transactions on Graphics (TOG), vol. 37, no. 6, pp. 1-10, 2018.
  13. Y. Lee, K. Wampler, G. Bernstein, J. Popovic, and Z. Popovic, "Motion fields for interactive character locomotion," in ACM SIGGRAPH Asia 2010 papers, 2010, pp. 1-8.
  14. J. Hwang, M. Yang, I. H. Suh, and T. Kwon, "Real-time grasp planning based on motion field graph for human-robot cooperation," in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2016, pp. 1025-1032.
  15. M. G. Choi, M. Kim, K. L. Hyun, and J. Lee, "Deformable motion: Squeezing into cluttered environments," in Computer Graphics Forum, vol. 30, no. 2. Wiley Online Library, 2011, pp. 445-453. https://doi.org/10.1111/j.1467-8659.2011.01889.x
  16. S. Lee and S.-H. Lee, "Projective motion correction with contact optimization," IEEE transactions on visualization and computer graphics, vol. 25, no. 4, pp. 1746-1759, 2018. https://doi.org/10.1109/tvcg.2018.2818721
  17. Y. Lipman, O. Sorkine, D. Cohen-Or, D. Levin, C. Rossi, and H.-P. Seidel, "Differential coordinates for interactive mesh editing," in Proceedings Shape Modeling Applications, 2004. IEEE, 2004, pp. 181-190.
  18. L. Kovar, J. Schreiner, and M. Gleicher, "Footskate cleanup for motion capture editing," in Proceedings of the 2002 ACM SIGGRAPH/Eurographics symposium on Computer animation, 2002, pp. 97-104.
  19. G. D. Knott, Interpolating cubic splines. Springer Science & Business Media, 2000, vol. 18.