References
- Baran, R.P. (2014), Aeroelastic Analysis and Classical Flutter of a Wind Turbine Using BLADEMODE V. 2.0 and PHATAS in FOCUS 6", Master Thesis, Delft University of Technology.
- Carrion, M., Steijl, R., Woodgate, M., Barakos, G. N., Munduate, X., & Gomez-Iradi, S. (2014), "Aeroelastic analysis of wind turbines using a tightly coupled CFD-CSD method", J. Fluids Struct., 50, 392-415. https://doi.org/10.1016/j.jfluidstructs.2014.06.029.
- Farsadi, T. and Kayran, A. (2021), "Classical flutter analysis of composite wind turbine blades including compressibility", Wind Energy, 24(1), 69-91. https://doi.org/10.1002/we.2559.
- Farsadi, T. and Kayran, A. (2016), "Aeroelastic stability evaluation of bend-twist coupled composite wind turbine blades designed for load alleviation in wind turbine systems", In 34th Wind Energy Symposium. https://doi.org/10.2514/6.2016-1009.
- Farsadi, T. and A. Kayran. (2016), "Aeroelastic instability analysis of composite rotating blades based on Loewy's and Theodorsen's unsteady aerodynamics", The 2016 World Congress on Advances in Civil Environmental, and Materials Research.
- Ghasemi, A.R., Jahanshir, A. and Tarighat, M.H. (2014), "Numerical and analytical study of aeroelastic characteristics of wind turbine composite blades", Wind Struct., 18(2), 103-116. https://doi.org/10.12989/was.2014.18.2.103.
- Gozcu, O.M., Farsadi, T., Sener T. and Kayran, A. (2015), "Assessment of the Effect of Hybrid GRFP-CFRP Usage in Wind Turbine Blades on the Reduction of Fatigue Damage Equivalent Loads in the Wind Turbine System", In 33rd Wind Energy Symposium. https://doi.org/10.2514/6.2015-0999.
- Ha, S.K., Hayat, K. and Xu, L. (2014), "Effect of shallow-angled skins on the structural performance of the large-scale wind turbine blade", Renew. Energy, 71, 100-112. https://doi.org/10.1016/j.renene.2014.05.023.
- Abdel Hafeez, M.M. and El-Badawy, A.A. (2018), "Flutter limit investigation for a horizontal axis wind turbine blade", J. Vib. Acoust., 140(4). https://doi.org/10.1115/1.4039402.
- Hansen, M.H. (2004), "Stability analysis of three-bladed turbines using an eigenvalue approach. In: 42nd AIAA Aerospace sciences meeting and exhibit", Proceedings of the ASME Wind Energy Symposium, Reno, Nevada.
- Hansen, M.H. (2007), "Aeroelastic instability problems for wind turbines", Wind Energy, 10(6), 551-577, https://doi.org/10.1002/we.242.
- Hauptmann, S., Bulk, M., Schon, L., Erbsloh, S., Boorsma, K., Grasso, F. and Cheng, P.W. (2014), "Comparison of the lifting-line free vortex wake method and the blade-element-momentum theory regarding the simulated loads of multi-MW wind turbines", In Journal of Physics: Conference Series.
- Hayat, K. and Ha, S.K. (2015). "Flutter performance of large-scale wind turbine blade with shallow-angled skins", Compos. Struct., 132, 575-583. https://doi.org/10.1016/j.compstruct.2015.05.073.
- Hayat, K., De Lecea, A.G.M., Moriones, C.D. and Ha, S.K. (2016), "Flutter performance of bend-twist coupled large-scale wind turbine blades", J. Sound Vib., 370, 149-162. https://doi.org/10.1016/j.jsv.2016.01.032.
- Hong, C.H. and Chopra, I. (1985), "Aeroelastic stability analysis of a composite rotor blade", J. Amer. Helicopter Soc., 30(2), 57-67. https://doi.org/10.4050/JAHS.30.57.
- Howison, J., Thomas, J. and Ekici, K. (2018), "Aeroelastic analysis of a wind turbine blade using the harmonic balance method", Wind Energy, 21(4), 226-241. https://doi.org/10.1002/we.2157.
- Jonkman, J., Butterfield, S., Musial, W. and Scott, G. (2009), "Definition of a 5-MW reference wind turbine for offshore system development (No. NREL/TP-500-38060)", National Renewable Energy Lab.(NREL).
- Karaolis, N.M., Musgrove, P.J. and Jenimidis, G. (1988), "Active and passive aerodynamic power control using asymmetric fibre reinforced laminates for wind turbine blades", In Wind Energy Conversation: Proceedings of the 1988 10th BWEA Wind Energy Conference.
- Ke, S.T., Xu, L. and Ge, Y.J. (2017), "The aerostatic response and stability performance of a wind turbine tower-blade coupled system considering blade shutdown position", Wind Struct., 25(6), 507-535. https://doi.org/10.12989/was.2017.25.6.507.
- Leble, V. and Barakos, G. (2016), "Demonstration of a coupled floating offshore wind turbine analysis with high-fidelity methods", J. Fluids Struct., 62, 272-293. https://doi.org/10.1016/j.jfluidstructs.2016.02.001.
- Lee, J.W., Kim, J.K., Han, J.H. and Shin, H.K. (2013), "Active load control for wind turbine blades using trailing edge flap", Wind Struct., 16(3), 263-278. https://doi.org/10.12989/was.2013.16.3.263.
- Lin, H.J. and Lai, W.M. (2010), "A study of elastic coupling to the wind turbine blade by combined analytical and finite element beam model", J. Compos. Mater., 44(23), 2643-2665. https://doi.org/10.1177/0021998310369578.
- Lindenburg, C. (2012). PHATAS Release "JAN-2012a", Users Manual, Program for Horizontal Axis Wind Turbine Analysis and Simulation. Knowledge Center WMC, Wieringerweft, The Netherlands, Technical Report No. ECN-I-05-005 r10.
- Lobitz, D.W., Veers, P.S., Eisler, G.R., Laino, D.J., Migliore, P.G. and Bir, G. (2001), "The use of twist-coupled blades to enhance the performance of horizontal axis wind turbines", SAND2001-1303, May, https://doi.org/10.2172/783086
- Lobitz, D.W. (2004), "Aeroelastic stability predictions for MWsized wind turbine blades", Wind Energy, 7(3), 211-224. https://doi.org/10.1002/we.120.
- Locke, J., Valencia, U. and Ishikawa, K. (2003), "Design studies for twist-coupled wind turbine blades", In Wind Energy Symposium. https://doi.org/10.1115/WIND2003-1043
- Natori, M. and Nemat-Nasser, S. (1986), "Application of a mixed variational approach to aeroelastic stability analysis of a nonuniform blade", J. Struct. Mech., 14(1), 5-31. https://doi.org/10.1080/03601218608907508.
- Politakis, G., Haans, W. and van Bussel, G. (2008), "Suppression of classical flutter using a 'smart blade", In 46th AIAA Aerospace Sciences Meeting and Exhibit. https://doi.org/10.2514/6.2008-1301.
- Rafiee, R. and Fakoor, M. (2013), "Aeroelastic investigation of a composite wind turbine blade", Wind Struct., 17(6), 671-680. https://doi.org/10.12989/was.2013.17.6.671.
- Rafiee, R., Moradi, M. and Khanpour, M. (2016), "The influence of material properties on the aeroelastic behavior of a composite wind turbine blade", J. Renew. Sustain. Energy, 8(6), 063305. https://doi.org/10.1063/1.4968600.
- Rafiee, R., Tahani, M. and Moradi, M. (2016), "Simulation of aeroelastic behavior in a composite wind turbine blade", J. Wind Eng. Ind. Aerod., 151, 60-69. https://doi.org/10.1016/j.jweia.2016.01.010.
- Rehman, S., Alam, M.M. and Alhems, L.M. (2020), "A review of wind-turbine structural stability, failure and alleviation", Wind Struct., 30(5), 511-524. https://doi.org/10.12989/WAS.2020.30.5.511.
- Rezaee, M. and Aly, A.M. (2016), "Vibration control in wind turbines for performance enhancement: A comparative study", Wind Struct., 22(1). http://dx.doi.org/10.12989/was.2016.22.1.107.
- Sener, O., Farsadi, T., Ozan Gozcu, M. and Kayran, A. (2018), "Evaluation of the effect of spar cap fiber angle of bending-torsion coupled blades on the aero-structural performance of wind turbines", J. Solar Energy Eng., 140(4), 041004-1-041004-18. https://doi.org/10.1115/1.4039350.
- Stablein, A.R., Hansen, M.H. and Verelst, D.R. (2017), "Modal properties and stability of bend-twist coupled wind turbine blades", Wind Energy Sci., 2(1), 343-360. https://doi.org/10.5194/wes-2-343-2017.
- Yu, W., Ho, J.C. and Hodges, D.H. (2012), "Variational asymptotic beam sectional analysis-An updated version", Int. J. Eng. Sci., 59, 40-64. https://doi.org/10.1016/j.ijengsci.2012.03.006.