DOI QR코드

DOI QR Code

Wind engineering for high-rise buildings: A review

  • Zhu, Haitao (College of Civil Engineering, Tongji University) ;
  • Yang, Bin (College of Civil Engineering, Tongji University) ;
  • Zhang, Qilin (College of Civil Engineering, Tongji University) ;
  • Pan, Licheng (College of Civil Engineering, Tongji University) ;
  • Sun, Siyuan (College of Civil Engineering, Tongji University)
  • Received : 2020.07.20
  • Accepted : 2021.03.11
  • Published : 2021.03.25

Abstract

As high-rise buildings become more and more slender and flexible, the wind effect has become a major concern to modern buildings. At present, wind engineering for high-rise buildings mainly focuses on the following four issues: wind excitation and response, aerodynamic damping, aerodynamic modifications and proximity effect. Taking these four issues of concern in high-rise buildings as the mainline, this paper summarizes the development history and current research progress of wind engineering for high-rise buildings. Some critical previous work and remarks are listed at the end of each chapter. From the future perspective, the CFD is still the most promising technique for structural wind engineering. The wind load inversion and the introduction of machine learning are two research directions worth exploring.

Keywords

References

  1. Amin, J.A. and Ahuja, A. (2012), "Wind-induced mean interference effects between two closed spaced buildings", Ksce J. Civil Eng., 16(1), 119-131. https://doi.org/10.1007/s12205-012-1163-y.
  2. Amin, J.A. and Ahuja, A.K. (2010), "Aerodynamic modifications to the shape of the buildings: a review of the state-of-the-art", Asian J. Civil Eng.., 11(4).
  3. Aquino, R.E.R. and Tamura, Y. (2013), "Framework for structural damping predictor models based on stick-slip mechanism for use in wind-resistant design of buildings", J Wind Eng Ind Aerod., 117 25-37. https://doi.org/10.1016/j.jweia.2013.04.001.
  4. Asghari Mooneghi, M. and Kargarmoakhar, R. (2016), "Aerodynamic mitigation and shape optimization of buildings: review", J. Build. Eng., 6 225-235. https://doi.org/10.1016/j.jobe.2016.01.009.
  5. Baetke, F., Werner, H. and Wengle, H. (1990), "Numerical simulation of turbulent flow over surface-mounted obstacles with sharp edges and corners", J Wind Eng. Ind. Aerod., 35 129-147. https://doi.org/10.1016/0167-6105(90)90213-V.
  6. Baghaei Daemei, A., Eghbali, S.R., Moez, H. and Bahrami, P. (1970), "Wind tunnel flow simulation and aerodynamic shape optimization of tall buildings to improve the drag coefficient under wind forces", Hoviatshahr., 13(2), 63-80.
  7. Bailey, P.A. and Kwok, K.C.S. (1985), "Interference excitation of twin tall buildings", J Wind Eng Ind Aerod., 21(3), 323-338. https://doi.org/10.1016/0167-6105(85)90043-1.
  8. Bandi, E.K., Tamura, Y., Yoshida, A., Chul Kim, Y. and Yang, Q. (2013), "Experimental investigation on aerodynamic characteristics of various triangular-section high-rise buildings", J. Wind Eng. Ind. Aerod., 122 60-68. https://doi.org/10.1016/j.jweia.2013.07.002.
  9. Bashor, R., Bobby, S., Kijewski-Correa, T. and Kareem, A. (2012), "Full-scale performance evaluation of tall buildings under wind", J. Wind Eng. Ind. Aerod., 104-106(3), 88-97. https://doi.org/10.1016/j.jweia.2012.04.007.
  10. Bezabeh, M., Bitsuamlak, G. and Tesfamariam, S. (2020), "Performance-based wind design of tall buildings: concepts, frameworks, and opportunities", Wind Struct., 31(2), 103-142. https://doi.org/10.12989/was.2020.31.2.103.
  11. Blessmann, J. (1985), "Buffeting effects on neighbouring tall buildings", J. Wind Eng. Ind. Aerod., 18(1), 105-110. https://doi.org/10.1016/0167-6105(85)90077-7.
  12. Blevins, R.D. (1984), "Applied fluid dynamics handbook", New York.
  13. Blocken, B. (2014), "50 years of computational wind engineering: past, present and future", J. Wind Eng. Ind. Aerod., 129 69-102. https://doi.org/10.1016/j.jweia.2014.03.008.
  14. Boggs, D. (2014), "The past, present and future of high-frequency balance testing", Wind Struct., 18(4), 323-345. http://dx.doi.org/10.12989/was.2014.18.4.323.
  15. Boggs, D.W. and Peterka, J.A. (1989), "Aerodynamic model tests of tall buildings", J. Eng. Mech., 115(3), 618-635. https://doi.org/10.1061/(ASCE)0733-9399(1989)115:3(618).
  16. CEGB (1973), Report of the committee of inquiry into collapse of cooling towers at ferrybridge, monday, 1 november 1965, Central Electricity Generating Board
  17. Chen, X., Kwon, D. and Kareem, A. (2014), "High-frequency force balance technique for tall buildings: a critical review and some new insights", Wind Struct., 18(4), 391-422. http://dx.doi.org/10.12989/was.2014.18.4.391.
  18. Cheng, C.M., Lu, P.C. and Tsai, M.S. (2002), "Acrosswind aerodynamic damping of isolated square-shaped buildings", J. Wind Eng. Ind. Aerod., 90(12), 1743-1756. https://doi.org/10.1016/S0167-6105(02)00284-2.
  19. Cooper, K.R., Nakayama, M., Sasaki, Y., Fediw, A.A., Resende-Ide, S. and Zan, S.J. (1997), "Unsteady aerodynamic force measurements on a super-tall building with a tapered cross section", J. Wind Eng. Ind. Aerod., 72 199-212. https://doi.org/10.1016/S0167-6105(97)00258-4.
  20. Counihan, J. (1975), "Adiabatic atmospheric boundary layers: a review and analysis of data from the period 1880-1972", Atmos Environ., 9(10), 871-905. https://doi.org/10.1016/0004-6981(75)90088-8.
  21. Dagnew, A. and Bitsuamlak, G. (2013), "Computational evaluation of wind loads on buildings: a review", Wind Struct., 16(6), 629-660. http://dx.doi.org/10.12989/was.2013.16.6.629.
  22. Dagnew, A.K. and Bitsuamlak, G.T. (2014), "Computational evaluation of wind loads on a standard tall building using les", Wind Struct., 18(5), 567-598. https://doi.org/10.12989/was.2014.18.5.567.
  23. Dalgliesh, W.A. (1975), "Comparison of model/full-scale wind pressures on a high-rise building", J. Wind Eng. Ind. Aerod., 1 55-66. https://doi.org/10.1016/0167-6105(75)90006-9.
  24. Dalgliesh, W.A., Wright, W. and Schriever, W.R. (1967), Wind pressure measurements on a full-scale high-rise office building. Division of Building Research, National Research Council.
  25. Davenport, A.G. (1961), "Rationale for determining design wind velocities", Transactions Amer. Soc. Civil Eng., 126(2), 184-213. https://doi.org/10.1061/TACEAT.0008189.
  26. Davenport, A.G. (1961), "The application of statistical concepts to the wind loading of structures.", Proceedings of the Institution of Civil Engineers., 19(4), 449-472. https://doi.org/10.1680/iicep.1961.11304.
  27. Davenport, A.G. (1962), "The spectrum of horizontal gustiness near the ground in high winds", Quarter. J. Roy Meteor. Soc., 87(372), 194-211. https://doi.org/10.1002/qj.49708737208.
  28. Davenport, A.G. (1964). "The buffeting of large superficial structures by atmospheric turbulence", Annals New York Aca. Sci., 116(1), 135-160. https://doi.org/10.1111/j.1749-6632.1964.tb33943.x.
  29. Davenport, A.G. (1967), "Gust loading factors", J. Struct. Div.., 93(3), 11-34. https://doi.org/10.1061/JSDEAG.0001692.
  30. Davenport, A.G. (1992), "Progress in wind engineering: proceedings of the 8th international conference on wind engineering", J. Wind Eng. Ind. Aerod., 42(1-3), xv-xxxi. https://doi.org/10.1016/0167-6105(92)90093-P
  31. Dryden, H. and Kuethe, A. (1930), Effect of turbulence in wind tunnel measurements, US Government Printing Office
  32. Dryden, H.L. (1932), "Turbulence in wind tunnels", Aircr Eng Aerosp Tec.
  33. Dye, R.C.F. (1980), "Comparison of full-scale and wind-tunnel model measurements of ground winds around a tower building", J Wind Eng Ind Aerod., 6(3), 311-326. https://doi.org/10.1016/0167-6105(80)90008-2.
  34. Elshaer, A., Bitsuamlak, G. and El Damatty, A. (2017), "Enhancing wind performance of tall buildings using corner aerodynamic optimization", Eng. Struct., 136(1) 133-148. https://doi.org/10.1016/j.engstruct.2017.01.019.
  35. Faravelli, L., Ubertini, F. and Fuggini, C. (2011), "System identification of a super high-rise building via a stochastic subspace approach", Smart Struct. Syst., 7(2), 133-152. http://dx.doi.org/10.12989/sss.2011.7.2.133.
  36. Gu, M. (2010), "Wind-resistant studies on tall buildings and structures", Sci. China Technol. Sci., 53(10), 2630-2646. https://doi.org/10.1007/s11431-010-4016-2.
  37. Gu, M. and Qin, X.R. (2004), "Direct identification of flutter derivatives and aerodynamic admittances of bridge decks", Eng Struct., 26(14), 2161-2172. https://doi.org/10.1016/j.engstruct.2004.07.015.
  38. Gu, M. and Quan, Y. (2004), "Across-wind loads of typical tall buildings", J. Wind Eng. Ind. Aerod., 92(13), 1147-1165. https://doi.org/10.1016/j.jweia.2004.06.004.
  39. Gu, M. and Quan, Y. (2011), "Across-wind loads and effects of super-tall buildings and structures", Sci. China. Technol. Sci., 54(10), 2531-2541. https://doi.org/10.1016/j.jweia.2004.06.004.
  40. Hayashida, H. and Iwasa, Y. (1990), "Aerodynamic shape effects of tall building for vortex induced vibration", J. Wind Eng. Ind. Aerod., 33(1), 237-242. https://doi.org/10.1016/0167-6105(90)90039-F.
  41. He, Y. and Li, Q. (2013), "Dynamic responses of a 492-m-high tall building with active tuned mass damping system during a typhoon", Struct. Control Health Monit., 21(5), 705-720. https://doi.org/10.1002/stc.1596.
  42. He, Y., Li, Q., Zhu, H., Han, X., He, Y. and Li, X. (2018), "Monitoring of structural modal parameters and dynamic responses of a 600m-high skyscraper during a typhoon", Struct. Des. Tall Spec. Build., 27(6), e1456. https://doi.org/10.1002/tal.1456.
  43. Holmes, J. (1987), "Mode shape corrections for dynamic response to wind", Eng. Struct., 9(3), 210-212. https://doi.org/10.1016/0141-0296(87)90017-4.
  44. Holmes, J.D. (1975), "Pressure fluctuations on a large building and along-wind structural loading", J Wind Eng Ind Aerod., 1 249-278. https://doi.org/10.1016/0167-6105(75)90020-3.
  45. Hu, G., Hassanli, S., Kwok, K.C.S. and Tse, K.T. (2017), "Wind-induced responses of a tall building with a double-skin facade system", J. Wind Eng. Ind. Aerod., 168 91-100. https://doi.org/10.1016/j.jweia.2017.05.008.
  46. Hu, G., Liu, L., Tao, D., Song, J. and Kwok, K.C.S. (2019), "Investigation of wind pressures on tall building under interference effects using machine learning techniques".
  47. Hu, G., Liu, L., Tao, D., Song, J., Tse, K.T. and Kwok, K.C.S. (2020), "Deep learning-based investigation of wind pressures on tall building under interference effects", J. Wind Eng. Ind. Aerod., 201 104138. https://doi.org/10.1016/j.jweia.2020.104138.
  48. Huang, P. and Gu, M. (2002), "Study on wind-induced mean interference effects between two tall buildings", J. Build. Struct., 5.
  49. Huang, P., Quan, Y. and Gu, M. (2013), "Experimental study of aerodynamic damping of typical tall buildings", Math Prob. Eng., 2013 1-9. https://doi.org/10.1155/2013/731572.
  50. Hui, Y., Tamura, Y. and Yoshida, A. (2012), "Mutual interference effects between two high-rise building models with different shapes on local peak pressure coefficients", J. Wind Eng. Ind. Aerod., 104-106 98-108. https://doi.org/10.1016/j.jweia.2012.04.004.
  51. Hui, Y., Tamura, Y., Yoshida, A. and Kikuchi, H. (2013a), "Pressure and flow field investigation of interference effects on external pressures between high-rise buildings", J Wind Eng Ind Aerod., 115, 150-161. https://doi.org/10.1016/j.jweia.2013.01.012.
  52. Hui, Y., Yoshida, A. and Tamura, Y. (2013b), "Interference effects between two rectangular-section high-rise buildings on local peak pressure coefficients", J. Fluid Struct., 37, 120-133. https://doi.org/10.1016/j.jfluidstructs.2012.11.007.
  53. Irwin, P., Kilpatrick, J. and Frisque, A. (2008). "Friend or foe wind at height", In CTBUH 8th World Congress, March.
  54. Irwin, P.A. (2008a), "Bluff body aerodynamics in wind engineering", J. Wind Eng. Ind. Aerod., 96(6), 701-712. https://doi.org/10.1016/j.jweia.2007.06.008.
  55. Irwin, P.A. (2009), "Wind engineering challenges of the new generation of super-tall buildings", J. Wind Eng. Ind. Aerod., 97(7-8), 328-334. https://doi.org/10.1016/j.jweia.2009.05.001.
  56. Isyumov, N. (1978), "Studies of the pedestrian level wind environment at the boundary layer wind tunnel laboratory of the university of western ontario", J. Wind Eng. Ind. Aerod., 3(2-3), 187-200. https://doi.org/10.1016/0167-6105(78)90009-0.
  57. Isyumov, N. and Davenport, A. (1975), The Ground Level Wind Environment in Built-Up Areas, Heathrow.
  58. Isyumov, N. and Davenport, A. (1978), "Evaluation of the effects of tall buildings on pedestrian level wind environment", In ASCE Annual Convention. October.
  59. Isyumov, N., Fediw, A.A., Colaco, J. and Banavalkar, P.V. (1992), "Performance of a tall building under wind action", J. Wind Eng. Ind. Aerod., 42(1), 1053-1064. https://doi.org/10.1016/0167-6105(92)90112-N.
  60. Jeary, A.P. (1986), "Damping in tall buildings-a mechanism and a predictor", Earthq. Eng. Struct. Dyn., 14(5), 733-750. https://doi.org/10.1002/eqe.4290140505.
  61. Jensen, M. (1958), "The model-law for phenomena in natural wind", Ingenioren., 2(2), 121-128.
  62. Kareem, A. (1978), Wind Excited Motion of Buildings. Ph. D. Dissertation.
  63. Kareem, A. (1987), "The effect of aerodynamic interference on the dynamic response of prismatic structures", J Wind Eng. Ind. Aerod., 25(3), 365-372. https://doi.org/10.1016/0167-6105(87)90028-6.
  64. Kareem, A. and Zhou, Y. (2003), "Gust loading factor-past, present and future", J. Wind Eng. Ind. Aerod., 91(12), 1301-1328. https://doi.org/10.1016/j.jweia.2003.09.003.
  65. Kareem, A., Cermak, J.E. and Peterka, J.A. (1980), "Crosswind response of high-rise buildings", Wind Eng., 2 659-672. https://doi.org/10.1016/B978-1-4832-8367-8.50065-6.
  66. Kareem, A., Kijewski, T. and Tamura, Y. (1999), "Mitigation of motions of tall buildings with specific examples of recent applications", Wind Struct., 2(3), 201-251. https://doi.org/10.12989/was.1999.2.3.201
  67. Kato, N., Niihori, Y., Kurita, T. and Ohkuma, T. (1997), "Full-scale measurement of wind-induced internal pressures in a highrise building", J. Wind Eng. Ind. Aerod., 69-71 619-630. https://doi.org/10.1016/S0167-6105(97)00192-X.
  68. Kawai, H. (1992), "Vortex induced vibration of tall buildings", J. Wind Eng. Ind. Aerod., 41(1), 117-128. https://doi.org/10.1016/0167-6105(92)90399-U.
  69. Kawai, H. (1998), "Effect of corner modifications on aeroelastic instabilities of tall buildings", J. Wind Eng. Ind. Aerod., 74 719-729. https://doi.org/10.1016/S0167-6105(98)00065-8.
  70. Kim, W., Yoshida, A., Tamura, Y. and Yi, J. (2018), "Experimental study of aerodynamic damping of a twisted supertall building", J. Wind Eng. Ind. Aerod., 176 1-12. https://doi.org/10.1016/j.jweia.2018.03.005.
  71. Kim, Y. and Kanda, J. (2010), "Characteristics of aerodynamic forces and pressures on square plan buildings with height variations", J. Wind Eng. Ind. Aerod., 98(8-9), 449-465. https://doi.org/10.1016/j.jweia.2010.02.004.
  72. Kim, Y. and You, K. (2002), "Dynamic responses of a tapered tall building to wind loads", J. Wind Eng. Ind. Aerod., 90(12-15), 1771-1782. https://doi.org/10.1016/S0167-6105(02)00286-6.
  73. Kim, Y., You, K. and Ko, N. (2008), "Across-wind responses of an aeroelastic tapered tall building", J. Wind Eng. Ind. Aerod., 96(8-9), 1307-1319. https://doi.org/10.1016/j.jweia.2008.02.038.
  74. Kim, Y., You, K. and You, J. (2014), "Across and along-wind responses of tall building", J Cent South Univ., 21(11), 4404- 4408. https://doi.org/10.1007/s11771-014-2441-2.
  75. Kim, Y.C. and Kanda, J. (2008), "Wind response characteristics for habitability of tall buildings in Japan", Structural Des. Tall Spec. Build., 17(3), 683-718. https://doi.org/10.1002/tal.373.
  76. Kim, Y.C. and Kanda, J. (2013), "Wind pressures on tapered and set-back tall buildings", J. Fluid Struct., 39, 306-321. https://doi.org/10.1016/j.jfluidstructs.2013.02.008.
  77. Kim, Y.C., Bandi, E.K., Yoshida, A. and Tamura, Y. (2015), "Response characteristics of super-tall buildings - effects of number of sides and helical angle", J. Wind Eng. Ind. Aerod., 145 252-262. https://doi.org/10.1016/j.jweia.2015.07.001.
  78. Kwok, K.C. (2013), "Wind-induced vibrations of structures: with special reference to tall building aerodynamics", Advan. Struct. Wind Eng., https://doi.org/10.1007/978-4-431-54337-4_5.
  79. Kwok, K.C.S. and Melbourne, W.H. (1980), "Cross-wind response of structures due to displacement dependent lock-in excitation", Wind Eng., 2, 699-7088. https://doi.org/10.1016/B978-1-4832-8367-8.50068-1.
  80. Kwok, K.C. and Bailey, P.A. (1987), "Aerodynamic devices for tall buildings and structures", J. Eng. Mech., 113(3), 349-365. https://doi.org/10.1061/(ASCE)0733-9399(1987)113:3(349).
  81. Kwok, K.C.S. (1982), "Cross-wind response of tall buildings", Eng. Struct., 4(4), 256-262. https://doi.org/10.1016/0141-0296(82)90031-1.
  82. Kwok, K.C.S. (1988), "Effect of building shape on wind-induced response of tall building", J. Wind Eng. Ind. Aerod., 28(1-3), 381-390. https://doi.org/10.1016/0167-6105(88)90134-1.
  83. Kwok, K.C. and Melbourne, W.H. (1981), "Wind-induced lock-in excitation of tall structures", J. Struct. Div., 107(1), 57-72. https://doi.org/10.1061/JSDEAG.0005637.
  84. Lam, K.M. and Li, A. (2009), "Mode shape correction for windinduced dynamic responses of tall buildings using time-domain computation and wind tunnel tests", J. Sound Vib., 322(4-5), 740-755. https://doi.org/10.1016/j.jsv.2008.11.049.
  85. Lawson, T.V. and Penwarden, A.D. (1977), "The effects of wind on people in the vicinity of buildings", http://pascalfrancis.inist.fr/vibad/index.php?action=getRecordDetail&idt=P ASCAL7780305984.
  86. Lee, J.L. (1998), "The origin of the wind tunnel in Europe, 1871-1900", Air Power History., 45(2), 4.
  87. Letchford, C.W. and Isaacs, L.T. (1992), "Full scale measurement of wind speeds in an inner city", J. Wind Eng. Ind. Aerod., 44(1), 2331-2341. https://doi.org/10.1016/0167-6105(92)90024-5.
  88. Li, Q. and Yi, J. (2016), "Monitoring of dynamic behaviour of super-tall buildings during typhoons", Struct. Infrastruct. Eng., 12(3), 289-311. https://doi.org/10.1080/15732479.2015.1010223.
  89. Li, Q., He, Y., He, Y., Zhou, K. and Han, X. (2019), "Monitoring wind effects of a landfall typhoon on a 600 m high skyscraper", Struct. Infrastruct. Eng., 15(1), 54-71. https://doi.org/10.1080/15732479.2018.1505923.
  90. Li, Q.S., Fu, J.Y., Xiao, Y.Q., Li, Z.N., Ni, Z.H., Xie, Z.N. and Gu, M. (2006), "Wind tunnel and full-scale study of wind effects on china's tallest building", Eng Struct., 28(12), 1745-1758. https://doi.org/10.1016/j.engstruct.2006.02.017.
  91. Li, Y., Li, C., Li, Q., Song, Q., Huang, X. and Li, Y. (2020a), "Aerodynamic performance of caarc standard tall building model by various corner chamfers", J. Wind Eng. Ind. Aerod., 202 104197. https://doi.org/10.1016/j.jweia.2020.104197.
  92. Li, Z., Fu, J., He, Y., Liu, Z., Wu, J., Rao, R. and Ng, C. (2020b), "Structural responses of a supertall building subjected to a severe typhoon at landfall", Appl. Sci. Basel., 10(8). https://doi.org/10.3390/app10082965.
  93. Lin, N., Letchford, C., Tamura, Y., Liang, B. and Nakamura, O. (2005), "Characteristics of wind forces acting on tall buildings", J. Wind Eng. Ind. Aerod., 93(3), 217-242. https://doi.org/10.1016/j.jweia.2004.12.001.
  94. Liu, Y., Loh, C. and Ni, Y. (2013), "Stochastic subspace identification for output-only modal analysis: application to super high-rise tower under abnormal loading condition", Earthq. Eng. Struct. Dyn., 42(4), 477-498. https://doi.org/10.1002/eqe.2223.
  95. Marukawa, H., Kato, N., Fujii, K. and Tamura, Y. (1996), "Experimental evaluation of aerodynamic damping of tall buildings", J. Wind Eng. Ind. Aerod., 59(2-3), 177-190. https://doi.org/10.1016/0167-6105(96)00006-2.
  96. Melbourne, W. and Sharp, D. (1976), Effects of Upwind Buildings on the Response of Tall Buildings, In Proc. Reg. Conf. on Tall Buildings, Hong Kong.
  97. Miyashita, K., Katagiri, J., Nakamura, O., Ohkuma, T., Tamura, Y., Itoh, M. and Mimachi, T. (1993), "Wind-induced response of high-rise buildings effects of corner cuts or openings in square buildings", J. Wind Eng. Ind. Aerod., 50 319-328. https://doi.org/10.1016/0167-6105(93)90087-5.
  98. Muller, F. and Nieser, H. (1975), "Measurements of wind-induced vibrations on a concrete chimney", J. Wind Eng. Ind. Aerod., 1 239-248. https://doi.org/10.1016/0167-6105(75)90019-7.
  99. Murakami, S. and Mochida, A. (1988), "3-d numerical simulation of airflow around a cubic model by means of the k-ϵ model", J. Wind Eng. Ind. Aerod., 31(2), 283-303. https://doi.org/10.1016/0167-6105(88)90009-8.
  100. Murakami, S. and Mochida, A. (1989), "Three-dimensional numerical simulation of turbulent flow around buildings using the k-ε turbulence model", Build. Environ., 24(1), 51-64. https://doi.org/10.1016/0360-1323(89)90016-4.
  101. Murakami, S., Mochida, A. and Hayashi, Y. (1990), "Examining the κ-ϵ model by means of a wind tunnel test and large-eddy simulation of the turbulence structure around a cube", J. Wind Eng. Ind. Aerod., 35 87-100. https://doi.org/10.1016/0167-6105(90)90211-T.
  102. Murakami, S., Mochida, A. and Hibi, K. (1987), "Three-dimensional numerical simulation of air flow around a cubic model by means of large eddy simulation", J. Wind Eng. Ind. Aerod., 25(3), 291-305. https://doi.org/10.1016/0167-6105(87)90023-7.
  103. Murakami, S., Uehara, K. and Komine, H. (1979), "Amplification of wind speed at ground level due to construction of high-rise building in urban area", J. Wind Eng. Ind. Aerod., 4(3), 343-370. https://doi.org/10.1016/0167-6105(79)90012-6.
  104. Ohkuma, T., Marukawa, H., Niihori, Y. and Kato, N. (1991), "Full-scale measurement of wind pressures and response accelerations of a high-rise building", J. Wind Eng. Ind. Aerod., 38(2), 185-196. https://doi.org/10.1016/0167-6105(91)90040-4.
  105. Paterson, D.A. and Apelt, C.J. (1987), "Computation of wind flows over three-dimensional buildings", J. Wind Eng. Ind. Aerod., 24(3), 193-213. https://doi.org/10.1016/0167-6105(86)90022-X.
  106. Paterson, D.A. and Apelt, C.J. (1989), "Simulation of wind flow around three-dimensional buildings", Build. Environ., 24(1), 39-50. https://doi.org/10.1016/0360-1323(89)90015-2.
  107. Paterson, D.A. and Apelt, C.J. (1990), "Simulation of flow past a cube in a turbulent boundary layer", J. Wind Eng. Ind. Aerod., 35 149-176. https://doi.org/10.1016/0167-6105(90)90214-W.
  108. Pentek, M., Winterstein, A., Vogl, M., Kupas, P., Bletzinger, K. and Wuechner, R. (2018), "A multiply-partitioned methodology for fully-coupled computational wind-structure interaction simulation considering the inclusion of arbitrary added mass dampers", J. Wind Eng. Ind. Aerod., 177 117-135. https://doi.org/10.1016/j.jweia.2018.03.010.
  109. Pope, R.A. (1994), "Structural deficiencies of natural draught cooling towers at uk power stations. Part 1: failures at ferrybridge and fiddlers ferry", Struct. Build., 104(1), 1-10. https://doi.org/10.1680/istbu.1994.25675.
  110. Qin, X. and Gu, M. (2004), "Determination of flutter derivatives by stochastic subspace identification technique", Wind Struct., 7(3), 173-186. http://dx.doi.org/10.12989/was.2004.7.3.173.
  111. Quan, Y., Chen, J. and Gu, M. (2020), "Aerodynamic interference effects of a proposed taller high-rise building on wind pressures on existing tall buildings", Struct. Des. Tall Spec. Build., 29(4), https://doi.org/10.1002/tal.1703.
  112. Quan, Y., Gu, M. and Tamura, Y. (2005), "Experimental evaluation of aerodynamic damping of square super high-rise buildings", Wind Struct., 8(5), 309-324. http://dx.doi.org/10.12989/was.2005.8.5.309.
  113. Reinhold, T.A. (1977), Measurement of Simultaneous Fluctuating Loads at Multiple Levels on a Model of a Tall Building in a Simulated Urban Boundary Layer, Ph.D. Dissertation, Virginia Polytechnic Institute and State University.
  114. Reinhold, T.A., Tieleman, H.W. and Maher, F.J. (1977b), "Interaction of square prisms in two flow fields", J. Wind Eng. Ind. Aerod., 2(3), 223-241. https://doi.org/10.1016/0167-6105(77)90024-1.
  115. Relf, E. (1939), "Aerodynamic research at the national physical laboratory", J. Aeronaut. Sci., 6(4), 142-146. https://doi.org/10.2514/8.798.
  116. Sakamoto, H. and Haniu, H. (1988), "Aerodynamic forces acting on two square prisms placed vertically in a turbulent boundary layer", J. Wind Eng. Ind. Aerod., 31(1), 41-66. https://doi.org/10.1016/0167-6105(88)90187-0
  117. Sakamoto, H., Hainu, H. and Obata, Y. (1987), "Fluctuating forces acting on two square prisms in a tandem arrangement", J Wind Eng Ind Aerod., 26(1), 85-103. https://doi.org/10.1016/0167-6105(88)90187-0.
  118. Sharma, A., Mittal, H. and Gairola, A. (2018), "Mitigation of wind load on tall buildings through aerodynamic modifications: review", J. Build. Eng., 18 180-194. https://doi.org/10.1016/j.jobe.2018.03.005.
  119. Simiu, E. (1973), "Logarithmic profiles and design wind speeds", J. Eng. Mech. Div., 99(5), 1073-1083. https://doi.org/10.1061/JMCEA3.0001808.
  120. Simiu, E. (1986), "Wind effects on structures", An introduction to wind engineering.
  121. Simiu, E. and Scanlan, R.H. (1996), "Wind effects on structures: fundamentals and applications to design".
  122. Smagorinsky, J. (1963), "General circulation experiments with the primitive equations: i. The basic experiment", Mon Weather Rev., 91(3), 99-164. https://doi.org/10.1175/1520-0493(1963)091%3C0099:GCEWTP%3E2.3.CO;2.
  123. Solari, G. (1993), "Gust buffeting. Ii: dynamic alongwind response", J. Struct. Eng., 119(2), 383-398. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:2(383).
  124. Solari, G. and Repetto, M.P. (2002), "General tendencies and classification of vertical structures under gust buffeting", J. Wind Eng. Ind. Aerod., 90(11), 1299-1319. https://doi.org/10.1016/S0167-6105(02)00259-3.
  125. Stathopoulos, T. (1985), "Wind environmental conditions around tall buildings with chamfered corners", J. Wind Eng. Ind. Aerod., 21(1), 71-87. https://doi.org/10.1016/0167-6105(85)90034-0.
  126. Stathopoulos, T. and Storms, R. (1986), "Wind environmental conditions in passages between buildings", J. Wind Eng. Ind. Aerod., 24(1), 19-31. https://doi.org/10.1016/0167-6105(86)90070-X.
  127. Steckley A. (1989), "Motion-induced wind forces on chimneys and tall buildings".
  128. Stickland, M. (2013), "Northern seas wind index database", Norsewind.
  129. Su, J., Xia, Y. and Weng, S. (2020), "Review on field monitoring of high-rise structures", Struct. Control Health Monit., 27(12), e2629. https://doi.org/10.1002/stc.2629.
  130. Summers, D.M., Hanson, T. and Wilson, C.B. (1986), "Validation of a computer simulation of wind flow over a building model", Build Environ., 21(2), 97-111. https://doi.org/10.1016/0360-1323(86)90016-8.
  131. Swaddiwudhipong, S. and Khan, M. (2002), "Dynamic response of wind-excited building using cfd", J. Sound Vib., 253(4), 735-754. https://doi.org/10.1006/jsvi.2000.3508.
  132. Tamura, G.T. and Wilson, A.G. (1968), Pressure Differences Caused by Wind on Two Tall Buildings, Division of Building Research, National Research Council.
  133. Tamura, T. and Miyagi, T. (1999), "The effect of turbulence on aerodynamic forces on a square cylinder with various corner shapes", J. Wind Eng. Ind. Aerod., 83(1-3), 135-145. https://doi.org/10.1016/S0167-6105(99)00067-7.
  134. Tamura, T., Miyagi, T. and Kitagishi, T. (1998), "Numerical prediction of unsteady pressures on a square cylinder with various corner shapes", J. Wind Eng. Ind. Aerod., 74-76 531-542. https://doi.org/10.1016/S0167-6105(98)00048-8.
  135. Tamura, Y. (2013), Damping in Buildings and Estimation Techniques, Springer Japan
  136. Tamura, Y., Kareem, A., Solari, G., Kwok, K., Holmes, J. and Melbourne, W. (2005), "Aspects of the dynamic wind-induced response of structures and codification", Wind Struct., 8(4), 251-268. http://dx.doi.org/10.12989/was.2005.8.4.251.
  137. Tanaka, H., Tamura, Y., Ohtake, K., Nakai, M. and Chul Kim, Y. (2012), "Experimental investigation of aerodynamic forces and wind pressures acting on tall buildings with various unconventional configurations", J. Wind Eng. Ind. Aerod., 107-108 179-191. https://doi.org/10.1016/j.jweia.2012.04.014.
  138. Tang, U.F. and Kwok, K.C.S. (2004), "Interference excitation mechanisms on a 3dof aeroelastic caarc building model", J. Wind Eng. Ind. Aerod., 92(14), 1299-1314. https://doi.org/10.1016/j.jweia.2004.08.004.
  139. Taniike and Yoshihito (1991), "Turbulence effect on mutual interference of tall buildings", J. Eng. Mech., 117(3), 443-456. https://doi.org/10.1061/(ASCE)0733-9399(1991)117:3(443).
  140. Taniike and Yoshihito (1992), "Interference mechanism for enhanced wind forces on neighboring tall buildings", J. Wind Eng. Ind. Aerod., 42(1-3), 1073-1083. https://doi.org/10.1016/0167-6105(92)90114-P.
  141. Thepmongkorn, S., Wood, G.S. and Kwok, K.C.S. (2002), "Interference effects on wind-induced coupled motion of a tall building", J. Wind Eng. Ind. Aerod., 90(12), 1807-1815. https://doi.org/10.1016/S0167-6105(02)00289-1.
  142. Triantafyllou, M.S., Bourguet, R., Dahl, J. and Modarres-Sadeghi, Y. (2016), "Vortex-induced vibrations".
  143. Tschanz, T. (1982), "The base balance measurement technique and applications to dynamic wind loading to structures".
  144. Tse, K.T., Hitchcock, P.A., Kwok, K.C.S., Thepmongkorn, S. and Chan, C.M. (2009), "Economic perspectives of aerodynamic treatments of square tall buildings", J. Wind Eng. Ind. Aerod., 97(9-10), 455-467. https://doi.org/10.1016/j.jweia.2009.07.005.
  145. Ueda, H., Hibi, K., Tamura, Y. and Fujii, K. (1994), "Multichannel simultaneous fluctuating pressure measurement system and its applications", J Wind Eng Ind Aerod., 51(1), 93-104. https://doi.org/10.1016/0167-6105(94)90079-5.
  146. Uematsu, Y., Yamada, M., Higashiyama, H. and Orimo, T. (1992), "Effects of the corner shape of high-rise buildings on the pedestrian-level wind environment with consideration for mean and fluctuating wind speeds", J. Wind Eng. Ind. Aerod., 44(1), 2289-2300. https://doi.org/10.1016/0167-6105(92)90019-7.
  147. Van Overschee, P. and De Moor, B. (1993), "Subspace algorithms for the stochastic identification problem", Automatica., 29(3), 649-660. https://doi.org/10.1016/0005-1098(93)90061-W.
  148. VasilicMelling and Dubravka (1977), "Three-dimensional turbulent flow past rectangular bluff bodies", Imperial College London.
  149. Vickery, B.J. and Steckley, A. (1993), "Aerodynamic damping and vortex excitation on an oscillating prism in turbulent shear flow", J Wind Eng Ind Aerod., 49(1-3), 121-140. https://doi.org/10.1016/0167-6105(93)90009-D.
  150. Vickery, P., Steckley, A., Isyumov, N. and Vickery, B. (1985), The Effect of Mode Shape on the Wind Induced Response of Tall Buildings.
  151. von Karman, T. (1948), "Progress in the statistical theory of turbulence", Proc Natl Acad Sci U S A., 34(11), 530-539. https://doi.org/10.1073/pnas.34.11.530
  152. Wang, C., Li, Z., Hu, L., Zhao, Z., Luo, Q., Hu, J. and Zhang, X. (2019), "Field research on the wind-induced response of a super high-rise building under typhoon", Appl. Sci., 9(11), 2180. https://doi.org/10.3390/app9112180.
  153. Wei, Y., Peng, H. and Ming, G. (2004), "Experimental and numerical study on wind-induced mean interference effects on two tall buildings", J. Tongji Univ., 32(2), 152-156. https://doi.org/10.3321/j.issn:0253-374X.2004.02.003
  154. Wiren, B. (1977), "A wind tunnel study of wind velocities in passages between and through buildings".
  155. Xie, J. (2014), "Aerodynamic optimization of super-tall buildings and its effectiveness assessment", J. Wind Eng. Ind. Aerod., 130 88-98. https://doi.org/10.1016/j.jweia.2014.04.004.
  156. Xie, Z.N. and Gu, M. (2010), "Across-wind dynamic response of high-rise building under wind action with interference effects from one and two tall buildings", Struct. Des. Tall Spec. Build., 18(1), 37-57. https://doi.org/10.1002/tal.393.
  157. Xu, X., Yang, Q., Yoshida, A. and Tamura, Y. (2017), "Characteristics of pedestrian-level wind around super-tall buildings with various configurations", J. Wind Eng. Ind. Aerod., 166, 61-73. https://doi.org/10.1016/j.jweia.2017.03.013.
  158. Xu, Y.L. and Kwok, K. (1993), "Mode shape corrections for wind tunnel tests of tall buildings", Eng Struct., 15(5), 387-392. https://doi.org/10.1016/0141-0296(93)90042-3.
  159. Yamada, M., Uematsu, Y. and Sasaki, R. (1996), "A visual technique for the evaluation of the pedestrian-level wind environment around buildings by using infrared thermography", J. Wind Eng. Ind. Aerod., 65(1-3), 261-271. https://doi.org/10.1016/S0167-6105(97)00045-7.
  160. Yu, X., Xie, Z. and Gu, M. (2018), "Interference effects between two tall buildings with different section sizes on wind-induced acceleration", J. Wind Eng. Ind. Aerod., 182 16-26. https://doi.org/10.1016/j.jweia.2018.09.012.
  161. Zhang, J. and Li, Q. (2019), "Identification of modal parameters of a 600-m-high skyscraper from field vibration tests", Earthq.. Eng. Struct. D., 48(15), 1678-1698. https://doi.org/10.1002/eqe.3219.
  162. Zhang, J.W. and Li, Q.S. (2017), "Wind tunnel test and field measurement study of wind effects on a 600-m-high super-tall building", Struct. Des. Tall Spec. Build., 26(17), e1385. https://doi.org/10.1002/tal.1385.
  163. Zhang, W.J., Xu, Y.L. and Kwok, K.C.S. (1995), "Interference effects on aeroelastic torsional response of structurally asymmetric tall buildings", J. Wind Eng. Ind. Aerod., 57(1), 41-61. https://doi.org/10.1016/0167-6105(94)00098-X.
  164. Zhao, R., Xu, A., Sun, W. and Lan, X. (2017), "Model shape correction method for high-frequency force balance technique", J. Vibroeng., 19(3), 1665-1679. https://doi.org/10.21595/jve.2017.17938
  165. Zhengwei, Z., Yong, Q. and Ming, G. (2013), "Effects of corner recession modification on aerodynamic coefficients of square high-rise buildings", China Civil Eng. J., 46(7), 58-65.
  166. Zhi, L., Fang, M. and Li, Q.S. (2017a), "Estimation of wind loads on a tall building by an inverse method: estimation of wind loads by an inverse method", Struct. Control Health Monit., 24(4), e1908. https://doi.org/10.1002/stc.1908.
  167. Zhi, L., Li, Q., Fang, M. and Yi, J. (2017b), "Identification of wind loads on supertall buildings using kalman filtering-based inverse method", J Struct Eng., 143(4). https://doi.org/10.1061/(ASCE)ST.1943-541X.0001691.
  168. Zhi, L., Li, Q.S. and Fang, M. (2016), "Identification of wind loads and estimation of structural responses of super-tall buildings by an inverse method", Comput. Aid. Civil Infrastruct. Eng., 31(12), 966-982. https://doi.org/10.1111/mice.12241.
  169. Zhou, Y., Kijewski, T. and Kareem, A. (2003), "Aerodynamic loads on tall buildings: interactive database", J. Struct. Eng., 129(3), 394-404. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:3(394)