References
- Abbott, I.H. and von Doenhoff, A.E. (1959), Theory of Wing Sections, Dover Publications, New York.
- Abinav, R., Nair, N.R., Sravan, P., Kumar, P. and Nagaraja, S.R. (2016), "CFD Analysis of co flow jet airfoil", Indian J. Sci. Technol., 9, 45. https://doi.org/10.17485/ijst/2016/v9i45/104686.
- Alonso-Estebanez, A., del Coz Diaz, J.J., Rabanal, F.P., lvarez Pascual-Munoz, P. and Nieto, P.J.G. (2018), "Numerical investigation of truck aerodynamics on several classes of infrastructures", Wind Struct., 26(1), 35-43. https://doi.org/10.12989/WAS.2018.26.1.035.
- Anitha, D., Shamili, G.K., Kumar, P.R. and Vihar, R.S. (2018), "Air foil shape optimization using CFD and parametrization methods", Mater. Today: Proc., 5(2), 5364-5373. https://doi.org/10.1016/j.matpr.2017.12.122.
- ANSYS Inc (2017), ANSYS Fluent 18.0 Theory Guide, Ansys.
- Aranake, A.C., Lakshminarayan, V.K. and Duraisamy, K. (2015), "Computational analysis of shrouded wind turbine configurations using a 3-dimensional RANS solver", Renew. Energy, 75, 818-832. https://doi.org/10.1016/j.renene.2014.10.049.
- Argyropoulos, C.D. and Markatos, N.C. (2015), "Recent advances on the numerical modelling of turbulent flows", Appl. Math. Model., 39(2), 693-732. https://doi.org/10.1016/j.apm.2014.07.001.
- Bansal, L., Chauhan, S., Kumar, C., Muzakkir, S.M. and Jafri, H.Z. (2017), "CFD Analysis of an aerofoil placed in uniform Flow", Int. J. Sci. Eng. Res, 8(7), 163-165.
- Basta, E., Ghommem, M., Romdhane, L. and Abdelkefi, A. (2020), "Modeling and experimental comparative analysis on the performance of small-scale wind turbines", Wind Struct., 30(3), 261-273. http://dx.doi.org/10.12989/was.2020.30.3.261.
- Cakmakcioglu, S.C., Sert, I.O., Tugluk, O. and Sezer-Uzol, N. (2014), "2-D and 3-D CFD investigation of NREL S826 airfoil at low Reynolds numbers", J. Phys. Conf. Ser., 524(1), IOP Publishing.
- Celik, Y., Ma, L., Ingham, D. and Pourkashanian, M. (2020), "Aerodynamic investigation of the start-up process of H-type vertical axis wind turbines using CFD", J. Wind. Eng. Ind. Aerod., 204, 104252. https://doi.org/10.1016/j.jweia.2020.104252.
- Eggert, C.A. and Rumsey, C.L. (2017), CFD study of NACA 0018 airfoil with flow control, NASA/TM-2017-219602.
- Elsakka, M.M., Ingham, D.B., Ma, L. and Pourkashanian, M. (2018), "Effects of turbulence modelling on the predictions of the pressure distribution around the wing of a small scale vertical axis wind turbine", The 7th European Conference on Computational Fluid Dynamics (ECFD 7), Glasgow, U.K.
- Gresho, P.M. (1991), "Some current CFD issues relevant to the incompressible Navier-Stokes equations", Comput. Methods Appl. Mech. Eng., 87(2-3), 201-252. https://doi.org/10.1016/0045-7825(91)90006-R.
- Ilhan, A., Bilgili, M. and Sahin, B. (2018), "Analysis of aerodynamic characteristics of 2 MW horizontal axis large wind turbine", Wind Struct., 27(3), 187-197. http://dx.doi.org/10.12989/was.2018.27.3.187.
- Kapsalis, P.C.S., Voutsinas, S. and Vlachos, N.S. (2016), "Comparing the effect of three transition models on the CFD predictions of a NACA0012 airfoil aerodynamics", J. Wind. Eng. Ind. Aerod., 157, 158-170. https://doi.org/10.1016/j.jweia.2016.07.007.
- Kaya, M.N., Kose, F., Ingham, D., Ma, L. and Pourkashanian, M. (2018), "Aerodynamic performance of a horizontal axis wind turbine with forward and backward swept blades", J. Wind. Eng. Ind. Aerod., 176, 166-173. https://doi.org/10.1016/j.jweia.2018.03.023.
- Kose, F. and Kaya, M.N. (2018), "Wind-hydro pumped storage power stations to meet the energy demands of irrigation: Feasibility, optimal design and simulation of a system," J. Chin. Soc. Mech. Eng., 39(2), 223-232. http://dx.doi.org/10.29979/JCSME.
- Li, X., Zhang, L., Song, J., Bian, F. and Yang, K. (2020), "Airfoil design for large horizontal axis wind turbines in low wind speed regions", Renew. Energy, 145, 2345-2357. https://doi.org/10.1016/j.renene.2019.07.163.
- Lin, Y.T. and Chiu, P.H. (2020), "Influence of leading-edge protuberances of fx63 airfoil for horizontal-axis wind turbine on power performance", Sustain. Energy Technol. Assess., 38, 100675. https://doi.org/10.1016/j.seta.2020.100675.
- Manwell, J.F., McGowan, J.G. and Rogers, A.L. (2010), Wind energy explained: theory, design and application, John Wiley & Sons.
- Matyushenko, A.A., Kotov, E.V. and Garbaruk, A.V. (2017), "Calculations of flow around airfoils using two-dimensional RANS: an analysis of the reduction in accuracy", St. Petersburg Polytech. Univ. J.: Phys Math., 3(1), 15-21. https://doi.org/10.1016/j.spjpm.2017.03.004.
- Menter F.R. (1992), "Influence of freestream values on k-omega turbulence model predictions", AIAA J. 30, 1657-1659. http://dx.doi.org/10.2514/3.11115.
- Menter F.R. (1994), "Two-equation eddy-viscosity turbulence models for engineering applications", AIAA J. 32, 1598-1605. http://dx.doi.org/10.2514/3.12149.
- Morgado, J., Vizinho, R., Silvestre, M.A.R. and Páscoa, J.C. (2016), "XFOIL vs CFD performance predictions for high lift low Reynolds number airfoils", Aerosp. Sci. Technol., 52, 207-214. https://doi.org/10.1016/j.ast.2016.02.031.
- Patel, K.S., Patel, S.B., Patel, U.B. and Ahuja, A.P. (2014), "CFD Analysis of an eerofoil", Int. J. Eng. Res., 3(3), 154-158. https://doi.org/10.17950/ijer/v3s3/305
- Rostami, M.V., Saghafian, M., Sedaghat, A. and Miansari, M. (2011), "Numerical investigation of turbulent flow over a stationary and oscillatory NACA0012 airfoil using overset grids method'', Int. J. Numer. Methods Fluids, 67, 135-154. https://doi.org/10.1002/fld.2332.
- Shantanu, S., Bhat, R. and Govardhan, N. (2013), "Stall flutter of NACA 0012 airfoil at low Reynolds numbers'', J. Fluids Struct., 41, 166-174. https://doi.org/10.1016/j.jfluidstructs.2013.04.001.
- Siauw, W.L., Bonnet, J.P., Tensi, J., Cordier L., Noack B.R. and Cattafesta, L. (2010), "Transient dynamics of the flow around a NACA 0015 airfoil using fluidic vortex generators," Int. J. Heat Fluid Flow, 31(3), 450-459. https://doi.org/10.1016/j.ijheatfluidflow.2010.02.028.
- Spurthy, S., Sumukha, G.D., Prathik, B.V., Naveen, R., Srikanth, H.V. and Sridhar, K. (2016), "Study on effect of surface modification on aerodynamic characteristics of Eppler 387 airfoil", AIP Conf. Proc., 2204(1), AIP Publishing LLC. https://doi.org/10.1063/1.5141573.
- Sreejith B.K. and Sathyabhama, A. (2018), ''Numerical study on effect of boundary layer trips on aerodynamic performance of E216 airfoil'', Eng. Sci. Technol. Int. J., 21, 77-88. https://doi.org/10.1016/j.jestch.2018.02.005.
- Srinath, D.N. and Mittal, S. (2009), "Optimal airfoil shapes for low Reynolds number flows", Int. J. Numer. Methods Fluids, 61(4), 355-381. https://doi.org/10.1002/fld.1960.
- Tarhan, C. and Yilmaz, I. (2019), "Numerical and experimental investigations of 14 different small wind turbine airfoils for 3 different reynolds number conditions", Wind Struct., 28(3), 141-153. https://doi.org/10.12989/was.2019.28.3.141.
- Tasci, M.O., Karasu, I., Sahin, B. and Akilli, H. (2020), "Investigation of crossflow features of a slender delta wing", Wind Struct., 31(3), 229-240. http://dx.doi.org/10.12989/was.2020.31.3.229.
- Troolin, D.R., Longmire, E.K. and Lai, W.T. (2006), "Time resolved PIV analysis of flow over a NACA 0015 airfoil with Gurney flap", Exp. Fluids, 41, https://doi.org/10.1007/s00348-006-0143-8.
- Tu, J., Yeoh, G.H. and Liu, C. (2018), Computational Fluid Dynamics: A practical approach, Butterworth-Heinemann.
- Younsi, A., zamree bin abd Rahim, S. and Rezoug, T. (2019), "Aerodynamic investigation of an airfoil under two hovering modes considering ground effect", J. Fluids Struct., 91, 102759. https://doi.org/10.1016/j.jfluidstructs.2019.102759.
- Zamani, M., Maghrebi, M.J. and Moshizi, S.A. (2016), "Numerical study of airfoil thickness effects on the performance of J-shaped straight blade vertical axis wind turbine", Wind Struct., 22(5), 595-616. https://doi.org/10.12989/WAS.2016.22.5.595.
Cited by
- Experimental study of a micro-scale sloped solar chimney power plant vol.35, pp.12, 2021, https://doi.org/10.1007/s12206-021-1146-3