References
- Aly, A.M. and Bresowar, J.R. (2016), "Aerodynamic mitigation of wind-induced uplift forces on low-rise buildings: a comparative study", J. Build. Eng., 5, 267-276. https://doi.org/10.1016/j.jobe.2016.01.007
- Aly, A.M. and Gol-Zaroudi H. (2020), "Peak pressures on low rise buildings: CFD with LES versus full scale and wind tunnel measurements", Wind Struct., 30(1), 99-117. https://doi.org/10.12989/was.2020.30.1.099.
- Aly, A.M., Chokwitthaya, C. and Poche, R. (2017), "Retrofitting building roofs with aerodynamic features and solar panels to reduce hurricane damage and enhance eco-friendly energy production', Sustain. Cities Soc., 35, 581-593. https://doi.org/10.1016/j.scs.2017.09.
- AWES (2001), Wind Engineering Studies of Buildings, AWES-QAM-1-2001.
- Best, R.J. and Holmes, J.D. (1983), "Use of eigenvalues in the covariance integration method for determination of wind load effects", J. Wind Eng. Ind. Aerod., 13(1-3), 359-370. https://doi.org/10.1016/b978-0-444-42340-5.50043-9.
- Bienkiewicz, B., Ham, H.J. and Sun, Y. (1993), "Proper orthogonal decomposition of roof pressure", J. Wind Eng. Ind. Aerod., 50(C), 193-202. https://doi.org/10.1016/0167-6105(93)90074-x.
- Bienkiewicz, B., Tamura, Y., Ham, H.J., Ueda, H. and Hibi, K. (1995), "Proper orthogonal decomposition and reconstruction of multi-channel roof", J. Wind Eng. Ind. Aerod., 54-55(C), 700-710. https://doi.org/10.1016/0167-6105(94)00066-m.
- Brewick, P., Divel, L., Butler, K., Bashor, R. and Kareem, A. (2009), "Consequence of urban aerodynamics and debris impact in extreme wind events", Proceedings of the 11th Americas Conference on Wind Engineering, San Juan, Puerto Rico, June.
- Carassale, L. and Brunenghi, M.M. (2011), "Statistical analysis of wind-induced pressure fields: A methodological perspective", J. Wind Eng. Ind. Aerod., 99(6-7), 700-710. https://doi.org/10.1016/j.jweia.2011.03.011.
- Carassale, L., Solari, G. and Tubino, F. (2007), "Proper orthogonal decomposition in wind engineering. Part 2: Theoretical aspects and some applications", Wind Struct., 10(2), 177-208. https://doi.org/10.12989/was.2007.10.2.177.
- Chan, C.M., Ding, F. Tse, K.T., Huang, M.F., Shum, K.M. and Kwok, K.C.S. (2019), "Optimal wind-induced load combinations for structural design of tall buildings", Wind Struct., 29(5), 323-337. https://doi.org/10.12989/was.2019.29.5.323.
- Cheng, L., Lam, K.M. and Wong, S.Y. (2015), "POD analysis of crosswind forces on a tall building with square and H-shaped cross sections", Wind Struct., 21(1), 63-84. https://doi.org/10.12989/was.2015.21.1.063.
- Daemei, A.B. and Eghbali S.R. (2019), "Study on aerodynamic shape optimization of tall buildings using architectural modifications in order to reduce wake region", Wind Struct., 29(2), 139-147. https://doi.org/10.12989/was.2019.29.2.139.
- Dutton, R. and Isyumov, N. (1990), "Reduction of tall building motion by aerodynamic treatments", J. Wind Eng. Ind. Aerod., 36, 739-747. https://doi.org/10.1016/0167-6105(90)90071-j.
- Elshaer, A., Bitsuamlak, G. and El Damatty, A. (2017), "Enhancing wind performance of tall buildings using corner aerodynamic optimization", Eng. Struct., 136, 133-148. https://doi.org/10.1016/j.engstruct.2017.01.019.
- Gao, Y., Gu, M., Quan, Y. and Feng, C. (2020), "Large eddy simulation of blockage effects in the assessment of wind effects on tall buildings", Wind Struct., 30(6), 597-616. https://doi.org/10.12989/was.2020.30.6.597.
- Gu, M. and Quan, Y. (2004), "Across-wind loads of typical tall buildings", J. Wind Eng. Ind. Aerod, 92(13), 1147-1165. https://doi.org/10.1016/j.jweia.2004.06.004.
- Hayashida, H. and Iwasa, Y. (1990), "Aerodynamic shape effects of tall building for vortex induced vibration", J. Wind Eng. Ind. Aerod., 33(1), 237-242. https://doi.org/10.1016/0167-6105(90)90039-f.
- Huang, D., Wu, T. and He, S. (2020), "Experimental investigation of vortex-induced aeroelastic effects on a square cylinder in uniform flow", Wind Struct., 30(1), 37-54. https://doi.org/10.12989/was.2020.30.1.037.
- Kar, R., Dalui, S.K. and Bhattacharjya S. (2019), "An efficient optimization approach for wind interference effect on octagonal tall building", Wind Struct., 28(2), 111-128. https://doi.org/10.12989/was.2019.28.2.111.
- Kareem, A. and Bashor, R. (2006), "Performance of Glass/Cladding of High-Rise Buildings in Hurricane Katrina", The Wind Engineer: Newsletter of American Association for Wind Engineering, 1-5.
- Kareem, A. and Cermak, J.E. (1984), "Pressure fluctuations on a square building model in boundary-layer flows", J. Wind Eng. Ind. Aerod., 16(1), 17-41. https://doi.org/10.1016/0167-6105(84)90047-3.
- Kawai, H. (1998), "Effect of corner modifications on aeroelastic instabilities of tall buildings", J. Wind Eng. Ind. Aerod., 74-76, 719-729. https://doi.org/10.1016/s0167-6105(98)00065-8.
- Kikuchi, H., Tamura, Y., Ueda, H. and Hibi, K. (1997), "Dynamic wind pressure acting on a tall building model - proper orthogonal decomposition", J. Wind Eng. Ind. Aerod., 69-71, 631-646. https://doi.org/10.1016/s0167-6105(97)00193-1.
- Kim B. and Tse K.T. (2018). "POD analysis of aerodynamic correlations and wind-induced responses of two tall linked buildings", Eng. Struct., 176, 369-384. https://doi.org/10.1016/j.engstruct.2018.09.013
- Kim B., Tse K.T., and Tamura Y. (2018), "POD analysis of aerodynamic characteristics of tall linked buildings", J. Wind Eng. Ind. Aerod., 181, 126-140. https://doi.org/10.1016/j.jweia.2018.09.001
- Kim B., Tse K.T., Yoshida A., Chen Z., Van Phuc P., Park H.S. (2019b), "Investigation of flow visualization around linked tall buildings with circular sections", Build. Environ., 153, 60-76. https://doi.org/10.1016/j.buildenv.2019.02.021
- Kim B., Tse K.T., Yoshida A., Tamura Y., Chen Z., Van Phuc P., Park H.S. (2019a), "Statistical analysis of wind-induced pressure fields and PIV measurements on two buildings", J. Wind Eng. Ind. Aerod., 188, 161-174. https://doi.org/10.1016/j.jweia.2019.01.016
- Kim, Y.C. and Kanda, J. (2010), "Characteristics of aerodynamic forces and pressures on square plan buildings with height variations", J. Wind Eng. Ind. Aerod., 98(8-9), 449-465. https://doi.org/10.1016/j.jweia.2010.02.004.
- Kim, Y.C. and Kanda, J. (2013), "Wind pressures on tapered and set-back tall buildings", J. Fluid Struct., 39, 306-321. https://doi.org/10.1016/j.jfluidstructs.2013.02.008.
- Kwok, K.C.S. (1988), "Effect of building shape on wind-induced response of tall building", J. Wind Eng. Ind. Aerod., 28(1-3), 381-390. https://doi.org/10.1016/b978-0-444-87156-5.50049-7.
- Kwok, K.C.S. and Bailey P.A. (1987), "Aerodynamic devices for tall buildings and structures", J. Eng. Mech., 113(3), 349-365. https://doi.org/10.1061/(ASCE)0733-9399(1987)113:3(349).
- Kwok, K.C.S., Wilhelm, P.A. and Wilkie, B.G. (1988), "Effect of edge configuration on wind-induced response of tall buildings", Eng. Struct., 10(2), 135-140. https://doi.org/10.1016/0141-0296(88)90039-9.
- Lee, B.E. (1975), "The effect of turbulence on the surface pressure field of a square prism", J. Fluid Mech., 69(2), 263-282. https://doi.org/10.1017/s0022112075001437.
- Li, F. and Chen, X. (2020), "POD Analysis for modeling wind pressures and wind effects of a cylindrical shell roof", Wind Struct., 30(6), 559-573. https://doi.org/10.12989/was.2020.30.6.559.
- Mooneghi, M.A. and Kargarmoakhar, R. (2016), "Aerodynamic mitigation and shape optimization of buildings: Review", J. Building Eng., 6, 225-235. https://doi.org/10.1016/j.jobe.2016.01.009.
- Ozdogan, M., Sungur, B., Namli, L. and Durmus, A. (2017), "Comparative study of turbulent flow around a bluff body by using two- and three-dimensional CFD", Wind Struct., 25(6), 537-549. https://doi.org/10.12989/was.2017.25.6.537.
- Peng, Y., Zhao, W. and Ai, X. (2019), "Field measurement and CFD simulation of wind pressures on rectangular attic", Wind Struct., 29(6), 471-488. https://doi.org/10.12989/was.2019.29.6.471.
- Sanyal, P. and Dalui, S.K. (2020), "Effect of corner modifications on Y plan shaped tall building under wind load", Wind Struct., 30(3), 245-260. https://doi.org/10.12989/was.2020.30.3.245.
- Sharma, A., Mittal, H. and Gairola A. (2019), "Aerodynamics of tapered and set-back buildings using Detached-eddy simulation", Wind Struct., 29(2), 111-127. https://doi.org/10.12989/was.2019.29.2.111.
- Solari, G., Carassale, L. and Tubino, F. (2007), "Proper orthogonal decomposition in wind engineering. Part 1: A state-of-the-art and some prospects", Wind Struct., 10(2), 153-176. https://doi.org/10.12989/was.2007.10.2.153.
- Tamura, Y. and Cao, S. (2012), "International group for wind-related disaster risk reduction (IG-WRDRR)", J. Wind Eng. Ind. Aerod., 104, 3-11. https://doi.org/10.1016/j.jweia.2012.02.016.
- Tamura, Y., Suganuma, S., Kikuchi, H. and Hibi, K. (1999), "Proper orthogonal decomposition of random wind pressure field", J. Fluid Struct., 13(7-8), 1069-1095. https://doi.org/10.1006/jfls.1999.0242.
- Tamura, Y., Ueda, H., Kikuchi, H., Hibi, K., Suganuma, S. and Bienkiewicz, B. (1997), "Proper orthogonal decomposition study of approach wind-building pressure correlation", J. Wind Eng. Ind. Aerod., 72, 421-432. https://doi.org/10.1016/s0167-6105(97)00270-5.
- Tanaka, H., Tamura, Y., Ohtake, K., Nakai, M. and Kim, Y.C. (2012), "Experimental investigation of aerodynamic forces and wind pressures acting on tall buildings with various unconventional configurations", J. Wind Eng. Ind. Aerod., 107-108, 179-191. https://doi.org/10.1016/j.jweia.2012.04.014.
- Tse, K.T., Hitchcock, P.A., Kwok, K.C.S., Thepmongkorn, S. and Chan, C.M. (2009), "Economic perspectives of aerodynamic treatments of square tall buildings", J. Wind Eng. Ind. Aerod., 97(9-10), 455-467. https://doi.org/10.1016/j.jweia.2009.07.005.
- Zdravkovich, M.M. (1981), "Review and classification of various aerodynamic and hydrodynamic means for suppressing vortex shedding", J. Wind Eng. Ind. Aerod., 7(2), 145-189. https://doi.org/10.1016/0167-6105(81)90036-2.
- Zhang, J.F., Ge, Y., Zhao, L. and Chen, H. (2016), "Mathematical explanation on the POD applications for wind pressure fields with or without mean value components", Wind Struct., 23(4), 367-383. https://doi.org/10.12989/was.2016.23.4.367.
Cited by
- 독립 성분 분석을 이용한 모서리 변형을 고려한 고층 건물의 풍압특성 평가 vol.37, pp.7, 2021, https://doi.org/10.5659/jaik.2021.37.7.203