References
- Afzal, F. and Muhammad, S. Virk. (2018), "Review of icing effects on wind turbine in cold regions.", E3S Web of Conferences 72. https://doi.org/10.1051/e3sconf/20187201007.
- Akay, B., Ragni, D., Ferreira, C.S. and Van Bussel, G.J.W. (2013), "Investigation of the Root Flow in a Horizontal Axis", Wind Energy, 1-20. https://doi.org/10.1002/we.
- Akin I., Mehmet, B. and Besir, S. (2018), "Analysis of aerodynamic characteristics of 2 MW horizontal axis large wind turbine", Wind Struct., 27(3), 187-197. http://dx.doi.org/10.12989/was.2018.27.3.187.
- Bose, N. (1992), "Icing on a small horizontal-axis wind turbine-Part 1: Glaze ice profiles", J. Wind Eng. Ind. Aerod., 45(1), 75-85. https://doi.org/10.1016/0167-6105(92)90006-V.
- Bragg, M.B., Broeren, A.P. and Blumenthal, L.A. (2005), "Iced-airfoil aerodynamics", Progress Aeros. Sci., 41(5), 323-362. https://doi.org/10.1016/j.paerosci.2005.07.001.
- Bragg, M.B., Khodadoust, A. and Spring, S.A. (1992). "Measurements in a leading-edge separation bubble due to a simulated airfoil ice accretion", AIAA J., 30(6), 1462-1467. https://doi.org/10.2514/3.11087.
- Broeren, A., LaMarre, C., Bragg, M. and Lee, S. (2005), "Characteristics of SLD ice accretions on airfoils and their aerodynamic effects", In 43rd AIAA Aerospace Sciences Meeting and Exhibit.
- Cao, Y., Wenyuan T. and Zhenlong W. (2018), "Aircraft icing: An ongoing threat to aviation safety", Aeros. Sci. Technol. 75, 353-85. https://doi.org/10.1016/j.ast.2017.12.028.
- Cevahir T. and Ilker Y. (2019), "Numerical and experimental investigations of 14 different small wind turbine airfoils for 3 different Reynolds number condition", Wind Struct., 28(3), 141-153. http://dx.doi.org/10.12989/was.2019.28.3.141.
- Fakorede, O., Zoe F., Hussein I., Adrian I., Jean P. and Christian M. (2016), "Ice protection systems for wind turbines in cold climate: Characteristics, comparisons and analysis", Renew. Sustain. Energy Rev., https://doi.org/10.1016/j.rser.2016.06.080.
- Ferrer, E. and Munduate, X. (2007), "Wind turbine blade tip comparison using CFD", In Journal of Physics: Conference Series, https://doi.org/10.1088/1742-6596/75/1/012005.
- Fu, P. and Masoud F. (2010), "A CFD approach for modeling the rime-ice accretion process on a horizontal-axis wind turbine", J. Wind Eng. Ind. Aerod., 98(4-5), 181-188. https://doi.org/10.1016/j.jweia.2009.10.014.
- Han, Y., Jose P. and Sven S. (2012), "Scaled ice accretion experiments on a rotating wind turbine blade", J. Wind Eng. Ind. Aerod., 109, 55-67. https://doi.org/10.1016/j.jweia.2012.06.001.
- Han, Y., Jose P. and Sven, S. (2012), "Scaled ice accretion experiments on a rotating wind turbine blade", J. Wind Eng. Ind. Aerod., 109, 55-67. https://doi.org/10.1016/j.jweia.2012.06.001.
- Homola, M.C., Virk, M.S., Wallenius, T., Nicklasson, P.J. and Sundsbo, P.A. (2010), "Effect of atmospheric temperature and droplet size variation on ice accretion of wind turbine blades", J. Wind Eng. Ind. Aerod., 98(12), 724-729. https://doi.org/10.1016/j.jweia.2010.06.007.
- Howard R.J.A and Pereira J.C.F. (2006), "A study of wind turbine power generation and turbine/tower interaction using large eddy simulation", Wind Struct., 9(2), 95-108. http://dx.doi.org/10.12989/was.2006.9.2.095
- Hu, L., Xiaocheng Z., Jinge C., Xin, S. and Zhaohui, D. (2018), "Numerical simulation of rime ice on NREL phase VI blade", J. Wind Eng. Ind. Aerod., 178(May), 57-68. https://doi.org/10.1016/j.jweia.2018.05.007.
- Hudecz, A. (2014), "Icing problems of wind turbine blades in cold climates", Ph.D. Dissertation, Department of Wind Energy, Technical University of Denmark.
- Ibrahim, G.M., Pope, K. and Muzychka, Y.S. (2018), "Effects of blade design on ice accretion for horizontal axis wind turbines", J. Wind Eng. Ind. Aerod., 173, 39-52. https://doi.org/10.1016/j.jweia.2017.11.024.
- Jasinski, W.J., Noe, S.C., Selig, M.S. and Bragg, M.B. (1998), Wind Turbine Performance Under Icing Conditions.
- Jin, J.Y. and Virk, M.S. (2018), "Study of ice accretion along symmetric and asymmetric airfoils", J. Wind Eng. Ind. Aerod., 179(March), 240-249. https://doi.org/10.1016/j.jweia.2018.06.004.
- Jin, J.Y. and Virk, M.S. (2020), "Experimental study of ice accretion on S826 & S832 wind turbine blade profiles", Cold Regions Sci. Technol., 169, 102913. https://doi.org/10.1016/j.coldregions.2019.102913.
- Lamraoui, F., Guy F., Robert, B., Jean, P. and Christian, M. (2014), "Atmospheric icing impact on wind turbine production", Cold Regions Sci. Technol., https://doi.org/10.1016/j.coldregions.2013.12.008.
- Maissan, J.F. (2001), "Wind power development in sub-arctic conditions with severe rime icing", Northern Review, 24, 174-183.
- Parent, O. and Adrian, I. (2011), "Anti-icing and de-icing techniques for wind turbines: Critical review", Cold Regions Sci. Technol., https://doi.org/10.1016/j.coldregions.2010.01.005.
- Politovich, M.K. (2014), "Aviation meteorology: Aircraft icing", Encyclopedia Atmos. Sci., 1. https://doi.org/10.1016/B978-0-12-382225-3.00055-4.
- Pouryoussefi, S.G., Mirzaei, M., Nazemi, M.M., Fouladi, M. and Doostmahmoudi, A. (2016), "Experimental study of ice accretion effects on aerodynamic performance of an NACA 23012 airfoil", Chinese J. Aeronaut., 29(3), 585-595. https://doi.org/10.1016/j.cja.2016.03.002.
- Pryor, S.C. and Barthelmie, R.J. (2010), "Climate change impacts on wind energy: A review", Renew. Sustain. Energy Rev., 14(1), 430-437. https://doi.org/10.1016/j.rser.2009.07.028.
- Raj, L.P., Lee, J.W. and Myong, R.S. (2019), "Ice accretion and aerodynamic effects on a multi-element airfoil under SLD icing conditions", Aeros. Sci. Technol., 85, 320-333. https://doi.org/10.1016/j.ast.2018.12.017.
- Rodriguez, I., Lehmkuhl, O., Borrell, R. and Oliva, A. (2015), Flow past a NACA0012 airfoil: From laminar separation bubbles to fully stalled regime", In Direct and Large-Eddy Simulation IX, 225-231, Springer, Cham. https://doi.org/10.1007/978-3-319-14448-1_28.
- Shin, J., Berkowitz, B., Chen, H.H. and Cebeci, T. (1994), "Prediction of ice shapes and their effect on airfoil drag", J. Aircraft, 31(2), 263-270. https://doi.org/10.2514/3.46483.
- Shu, L., Hantao, L., Qin, H., Xingliang, J., Gang, Q., Ghyslaine, M. and Hang, Y. (2018), "Study of ice accretion feature and power characteristics of wind turbines at natural icing environment", Cold Regions Sci. Technol., https://doi.org/10.1016/j.coldregions.2018.01.006.
- Somers, D.M. (1997), Design and Experimental Results for the S809 Airfoil, No. NREL/SR-440-6918. National Renewable Energy Lab., Golden.
- Tsai Hsiang, C. and Van Tan, T. (2015), "Prospects of wind energy on Penghu Island, Taiwan", Wind Struct. 20(1), 1-13. http://dx.doi.org/10.12989/was.2015.20.1.001.
- Tsao, J.C. and Anderson, D. (2004), "Additional study of MVD effects on ice shapes", In 42nd AIAA Aerospace Sciences Meeting and Exhibit.
- Virk, M.S., Homola, M.C. and Nicklasson, P.J. (2010), "Effect of rime ice accretion on aerodynamic characteristics of wind turbine blade profiles", Wind Eng., 34(2), 207-218. https://doi.org/10.1260/0309-524X.34.2.207.
- Virk, M.S., Homola, M.C. and Nicklasson, P.J. (2012), "Atmospheric icing on large wind turbine blades", Int. J. Energy Environ, 3(1), 1-8. https://doi.org/10.1186/2251-6832-3-1
- World Wind Energy Association (2019), World Wind Energy Association-Wind Power Capacity Worldwide Reaches 600 GW, 53, 9 GW added in 2018. Press ReleasesStatistics.
- Yirtici, O., Tuncer, I.H. and Ozgen, S. (2016), "Ice accretion prediction on wind turbines and consequent power losses", In J. Phys. Conference Series, 753(2), 022022, IOP Publishing. https://doi.org/10.1088/1742-6596/753/2/022022.
- Zhang, C. and Liu, H. (2016), "Effect of drop size on the impact thermodynamics for supercooled large droplet in aircraft icing", Phys. Fluids, 28(6), 062107. https://doi.org/10.1063/1.4953411.