DOI QR코드

DOI QR Code

Evolution of Plant RNA Viruses and Mechanisms in Overcoming Plant Resistance

식물 RNA 바이러스의 진화와 병저항성 극복 기작

  • Kim, Myung-Hwi (Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University) ;
  • Kwon, Sun-Jung (Institutes of Green Bio Science and Technology, Seoul National University) ;
  • Seo, Jang-Kyun (Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University)
  • 김명휘 (서울대학교 농업생명과학대학 농생명공학부) ;
  • 권선정 (서울대학교 그린바이오과학기술연구원) ;
  • 서장균 (서울대학교 농업생명과학대학 농생명공학부)
  • Received : 2021.10.09
  • Accepted : 2021.12.06
  • Published : 2021.12.31

Abstract

Plant RNA viruses are one of the most destructive pathogens that cause a significant loss in crop production worldwide. They have evolved with high genetic diversity and adaptability due to the short replication cycle and high mutation rate during genome replication, which are characteristics of RNA viruses. Plant RNA viruses exist as quasispecies with high genetic diversity; thereby, a rapid population transition with new fitness can occur due to selective pressure resulting from environmental changes. Plant resistance can act as selective pressure and affect the fitness of the virus, which may lead to the emergence of resistance-breaking variants. In this paper, we introduced the evolutionary perspectives of plant RNA viruses and the driving forces in their evolution. Based on this, we discussed the mechanism of the emergence of variant viruses that overcome plant resistance. In addition, strategies for deploying plant resistance to viral diseases and improving resistance durability were discussed.

식물 RNA 바이러스는 전세계적으로 작물 생산량에 큰 손실을 일으키는 주요 병원체 중 하나로, RNA 바이러스가 갖는 특징인 짧은 복제 주기, 게놈 복제 중의 높은 변이 발생률 등으로 인해 높은 유전적 다양성과 적응성을 가지며 진화해 왔다. 식물 RNA 바이러스는 유전적 다양성을 갖는 유사종 군집으로 존재하며, 환경 변화에 따른 선택압으로 새로운 적합성을 갖는 군집으로의 변천이 빠르게 일어날 수 있다. 식물의 저항성은 일종의 선택압으로 작용하여 바이러스의 적합성에 영향을 미치며, 이는 기주의 저항성을 극복하는 변이 바이러스의 출현으로 이어질 수 있다. 본 논문에서는 식물 RNA 바이러스에 대한 진화적 관점 및 진화의 원동력을 소개하고, 이를 바탕으로 식물 저항성을 극복하는 변이 바이러스의 출현 기작을 다루고자 한다. 또한 바이러스병에 대한 저항성 전개 및 내구성 향상을 위한 전략에 대해 논하였다.

Keywords

Acknowledgement

This research was supported in part by grants from Agenda Program (PJ014878) funded by the Rural Development Administration of Korea and Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry (320038-03-2-SB010) funded by the Ministry of Agriculture, Food and Rural Affairs of Korea.

References

  1. Aanen, D. K. and Debets, A. J. M. 2019. Mutation-rate plasticity and the germline of unicellular organisms. Proc. R. Soc. B. 286: 20190128. https://doi.org/10.1098/rspb.2019.0128
  2. Acosta-Leal, R. and Xiong, Z. 2013. Intrahost mechanisms governing emergence of resistance-breaking variants of Potato virus Y. Virology 437: 39-47. https://doi.org/10.1016/j.virol.2012.12.001
  3. Adhab, M., Angel, C., Leisner, S. and Schoelz, J. E. 2018. The P1 gene of Cauliflower mosaic virus is responsible for breaking resistance in Arabidopsis thaliana ecotype Enkheim (En-2). Virology 523: 15-21. https://doi.org/10.1016/j.virol.2018.07.016
  4. Adkins, S. 2000. Tomato spotted wilt virus: positive steps towards negative success. Mol. Plant Pathol. 1: 151-157. https://doi.org/10.1046/j.1364-3703.2000.00022.x
  5. Ahangaran, A., Habibi, M. K., Mohammadi, G.-H. M., Winter, S. and Garcia-Arenal, F. 2013. Analysis of Soybean mosaic virus genetic diversity in Iran allows the characterization of a new mutation resulting in overcoming Rsv4-resistance. J. Gen. Virol. 94: 2557-2568. https://doi.org/10.1099/vir.0.055434-0
  6. Andino, R. and Domingo, E. 2015. Viral quasispecies. Virology 479-480: 46-51. https://doi.org/10.1016/j.virol.2015.03.022
  7. Antignus, Y., Lachman, O., Pearlsman, M., Maslenin, L. and Rosner, A. 2008. A new pathotype of Pepper mild mottle virus (PMMoV) overcomes the L(4) resistance genotype of pepper cultivars. Plant Dis. 92: 1033-1037. https://doi.org/10.1094/pdis-92-7-1033
  8. Arribas, M., Kubota, K., Cabanillas, L. and Lazaro, E. 2014. Adaptation to fluctuating temperatures in an RNA virus is driven by the most stringent selective pressure. PLoS ONE 9: e100940. https://doi.org/10.1371/journal.pone.0100940
  9. Arthur, K., Collins, N. C. and Randles, J. W. 2012. Mutation rate in Velvet tobacco mottle virus varies between genomic region and virus variant but is not influenced by obligatory mirid transmission. Virus Genes 45: 575-580. https://doi.org/10.1007/s11262-012-0801-2
  10. Ashby, J. A., Stevenson, C. E. M., Jarvis, G. E., Lawson, D. M. and Maule, A. J. 2011. Structure-based mutational analysis of eIF4E in relation to sbm1 resistance to pea seed-borne mosaic virus in pea. PLoS ONE 6:e15873. https://doi.org/10.1371/journal.pone.0015873
  11. Batuman, O., Turini, T. A., Oliveira, P. V., Rojas, M. R., Macedo, M., Mellinger, H. C., et al. 2016. First report of a resistance-breaking strain of Tomato spotted wilt virus infecting tomatoes with the Sw-5 tospovirus-resistance gene in California. Plant Dis. 101: 637.
  12. Beachy, R. N. 1999. Coat-protein-mediated resistance to tobacco mosaic virus: discovery mechanisms and exploitation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 354: 659-664. https://doi.org/10.1098/rstb.1999.0418
  13. Bendahmane, A., Kanyuka, K. and Baulcombe, D. C. 1999. The Rx gene from potato controls separate virus resistance and cell death responses. Plant Cell 11: 781-791. https://doi.org/10.2307/3870814
  14. Bernet, G. P. and Elena, S. F. 2015. Distribution of mutational fitness effects and of epistasis in the 5' untranslated region of a plant RNA virus. BMC Evol. Biol. 15: 274. https://doi.org/10.1186/s12862-015-0555-2
  15. Borrelli, V. M. G., Brambilla, V., Rogowsky, P., Marocco, A. and Lanubile, A. 2018. The enhancement of plant disease resistance using CRISPR/Cas9 technology. Front. Plant Sci. 9: 1245. https://doi.org/10.3389/fpls.2018.01245
  16. Brown, J. K. M. 2015. Durable resistance of crops to disease: a Darwinian perspective. Annu. Rev. Phytopathol. 53: 513-539. https://doi.org/10.1146/annurev-phyto-102313-045914
  17. Bruyere, A., Wantroba, M., Flasinski, S., Dzianott, A. and Bujarski, J. J. 2000. Frequent homologous recombination events between molecules of one RNA component in a multipartite RNA virus. J. Virol. 74: 4214-4219. https://doi.org/10.1128/jvi.74.9.4214-4219.2000
  18. Burdon, J. J., Barrett, L. G., Rebetzke, G. and Thrall, P. H. 2014. Guiding deployment of resistance in cereals using evolutionary principles. Evol. Appl. 7: 609-624. https://doi.org/10.1111/eva.12175
  19. Cebolla-Cornejo, J., Soler, S. and Nuez, F. 2003. Control of disease induced by Tospoviruses in tomato: an update of the genetic approach. Phytopathol. Mediterr. 42: 207-219.
  20. Cervera, H. and Elena, S. F. 2016. Genetic variation in fitness within a clonal population of a plant RNA virus. Virus Evol. 2: vew006. https://doi.org/10.1093/ve/vew006
  21. Choi, B. K., Koo, J. M., Ahn, H. J., Yum, H. J., Choi, C. W., Ryu, K. H. et al. 2005. Emergence of Rsv-resistance breaking Soybean mosaic virus isolates from Korean soybean cultivars. Virus Res. 112: 42-51. https://doi.org/10.1016/j.virusres.2005.03.020
  22. Chowda-Reddy, R. V., Sun, H., Chen, H., Poysa, V., Ling, H., Gijzen, M. et al. 2010. Mutations in the P3 protein of Soybean mosaic virus G2 isolates determine virulence on Rsv4-genotype soybean. Mol. Plant-Microbe Interact. 24: 37-43. https://doi.org/10.1094/MPMI-07-10-0158
  23. Cruz, S. S. and Baulcombe, D. C. 1993. Molecular analysis of potato virus X isolates in relation to the potato hypersensitivity gene Nx. Mol. Plant-Microbe Interact. 6: 707-714. https://doi.org/10.1094/MPMI-6-707
  24. Csillery, G., Tobias, I. and Rusko, J. 1983. A new pepper strain of tomato mosaic virus. Acta Phytopathol. Acad. Sci. Hung. 18: 195-200.
  25. Culver, J. N. and Dawson, W. O. 1989. Point mutations in the coat protein gene of tobacco mosaic virus induce hypersensitivity in Nicotiana sylvestris. Mol. Plant-Microbe Interact. 2: 209-213. https://doi.org/10.1094/MPMI-2-209
  26. de Ronde, D., Butterbach, P. and Kormelink, R. 2014. Dominant resistance against plant viruses. Front. Plant Sci. 5: 307. https://doi.org/10.3389/fpls.2014.00307
  27. Decroocq, V., Salvador, B., Sicard, O., Glasa, M., Cosson, P., SvanellaDumas, L. et al. 2009. The determinant of potyvirus ability to overcome the RTM resistance of Arabidopsis thaliana maps to the N-terminal region of the coat protein. Mol. Plant-Microbe Interact. 22: 1302-1311. https://doi.org/10.1094/mpmi-22-10-1302
  28. Decroocq, V., Sicard, O., Alamillo, J. M., Lansac, M., Eyquard, J. P., Garcia, J. A. et al. 2006. Multiple resistance traits control Plum pox virus infection in Arabidopsis thaliana. Mol. Plant-Microbe Interact. 19: 541-549. https://doi.org/10.1094/MPMI-19-0541
  29. DeFilippis, V. R. and Villarreal, L. P. 2000. An introduction to the evolutionary ecology of viruses. In: Viral Ecology, ed. by C. J. Hurst, pp. 125-208. Academic Press, San Diego, CA, USA.
  30. Diaz-Pendon, J. A., Truniger, V., Nieto, C., Garcia-Mas, J., Bendahmane, A. and Aranda, M. A. 2004. Advances in understanding recessive resistance to plant viruses. Mol. Plant Pathol. 5: 223-233. https://doi.org/10.1111/j.1364-3703.2004.00223.x
  31. Dietzgen, R. G., Mann, K. S. and Johnson, K. N. 2016. Plant virus-insect vector interactions: current and potential future research directions. Viruses 8: 303. https://doi.org/10.3390/v8110303
  32. Domingo, E. 1997. Rapid evolution of viral RNA genomes. J. Nutr. 127(5 Suppl): 958S-961S. https://doi.org/10.1093/jn/127.5.958S
  33. Domingo, E. 2016. Virus as Populations: Composition, Complexity, Dynamics and Biological Implications. Elsevier, Amsterdam, The Netherlands. 412 pp.
  34. Dreher, T. W. 2009. Role of tRNA-like structures in controlling plant virus replication. Virus Res. 139: 217-229. https://doi.org/10.1016/j.virusres.2008.06.010
  35. Duffy, S., Shackelton, L. A. and Holmes, E. C. 2008. Rates of evolutionary change in viruses: patterns and determinants. Nat. Rev. Genet. 9: 267-276. https://doi.org/10.1038/nrg2323
  36. Elena, S. F., Bedhomme, S., Carrasco, P., Cuevas, J. M., de la Iglesia, F., Lafforgue, G., et al. 2011. The evolutionary genetics of emerging plant RNA viruses. Mol. Plant-Microbe Interact. 24: 287-293. https://doi.org/10.1094/mpmi-09-10-0214
  37. Elena, S. F., Fraile, A. and Garcia-Arenal, F. 2014. Evolution and emergence of plant viruses. Adv. Virus Res. 88: 161-191. https://doi.org/10.1016/B978-0-12-800098-4.00003-9
  38. Fabre, F., Montarry, J., Coville, J., Senoussi, R., Simon, V. and Moury, B. 2012. Modelling the evolutionary dynamics of viruses within their hosts: a case study using high-throughput sequencing. PLoS Pathog. 8: e1002654. https://doi.org/10.1371/journal.ppat.1002654
  39. Fan, Q., Treder, K. an Miller, W. A. 2012. Untranslated regions of diverse plant viral RNAs vary greatly in translation enhancement efficiency. BMC Biotechnol. 12: 22. https://doi.org/10.1186/1472-6750-12-22
  40. Fermin, G. 2018. Host range, host-virus interactions, and virus transmission. Viruses 2018: 101-134.
  41. Flor, H. H. 1971. Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 9: 275-296. https://doi.org/10.1146/annurev.py.09.090171.001423
  42. Fraile, A., Alonso-Prados, J. L., Aranda, M. A., Bernal, J. J., Malpica, J. M. and Garcia-Arenal, F. 1997. Genetic exchange by recombination or reassortment is infrequent in natural populations of a tripartite RNA plant virus. J. Virol. 71: 934-940. https://doi.org/10.1128/jvi.71.2.934-940.1997
  43. Fuchs, M. 2017. Pyramiding resistance-conferring gene sequences in crops. Curr. Opin. Virol. 26: 36-42. https://doi.org/10.1016/j.coviro.2017.07.004
  44. Garcia-Arenal, F., Fraile, A. and Malpica, J. M. 2001. Variability and genetic structure of plant virus populations. Annu. Rev. Phytopathol. 39: 157-186. https://doi.org/10.1146/annurev.phyto.39.1.157
  45. Genda, Y., Kanda, A., Hamada, H., Sato, K., Ohnishi, J. and Tsuda, S. 2007. Two amino acid substitutions in the coat protein of Pepper mild mottle virus are responsible for overcoming the L4 gene-mediated resistance in Capsicum spp. Phytopathology 97: 787-793. https://doi.org/10.1094/PHYTO-97-7-0787
  46. Ghazala, W. and Varrelmann, M. 2007. Tobacco rattle virus 29K movement protein is the elicitor of extreme and hypersensitive-like resistance in two cultivars of Solanum tuberosum. Mol. Plant-Microbe Interact. 20: 1396-1405. https://doi.org/10.1094/mpmi-20-11-1396
  47. Goldbach, R., Bucher, E. and Prins, M. 2003. Resistance mechanisms to plant viruses: an overview. Virus Res. 92: 207-212. https://doi.org/10.1016/S0168-1702(02)00353-2
  48. Gomez, P., Rodriguez-Hernandez, A. M., Moury, B. and Aranda, M. A. 2009. Genetic resistance for the sustainable control of plant virus diseases: breeding, mechanisms and durability. Eur. J. Plant Pathol. 125: 1-22. https://doi.org/10.1007/s10658-009-9468-5
  49. Hajimorad, M. R., Eggenberger, A. L. and Hill, J. H. 2008. Adaptation of Soybean mosaic virus avirulent chimeras containing P3 sequences from virulent strains to Rsv1-genotype soybeans is mediated by mutations in HC-Pro. Mol. Plant-Microbe Interact. 21: 937-946. https://doi.org/10.1094/mpmi-21-7-0937
  50. Hak, H. and Spiegelman, Z. 2021. The tomato brown rugose fruit virus movement protein overcomes Tm-22 resistance in tomato while attenuating viral transport. Mol. Plant-Microbe Interact. 34: 1024-1032. https://doi.org/10.1094/MPMI-01-21-0023-R
  51. Hamada, H., Takeuchi, S., Kiba, A., Tsuda, S., Hikichi, Y. and Okuno, T. 2002. Amino acid changes in Pepper mild mottle virus coat protein that affect L3 gene-mediated resistance in pepper. J. Gen. Plant Pathol. 68: 155-162. https://doi.org/10.1007/PL00013069
  52. Han, S.-J., Heo, K.-J., Choi, B. and Seo, J.-K. 2019. Recessive resistance: developing targets for genome editing to engineer viral disease resistant crops. Res. Plant Dis. 25: 49-61. (In Korean) https://doi.org/10.5423/RPD.2019.25.2.49
  53. Harper, S. J., Dawson, T. E. and Pearson, M. N. 2010. Isolates of Citrus tristeza virus that overcome Poncirus trifoliata resistance comprise a novel strain. Arch. Virol. 155: 471-480. https://doi.org/10.1007/s00705-010-0604-5
  54. Harrison, B. D. 2002. Virus variation in relation to resistance-breaking in plants. Euphytica 124: 181-192. https://doi.org/10.1023/A:1015630516425
  55. Hashimoto, M., Neriya, Y., Yamaji, Y. and Namba, S. 2016. Recessive resistance to plant viruses: potential resistance genes beyond translation initiation factors. Front. Microbiol. 7: 1695. https://doi.org/10.3389/fmicb.2016.01695
  56. Hebrard, E., Pinel-Galzi, A., Bersoult, A., Sire, C. and Fargette, D. 2006. Emergence of a resistance-breaking isolate of Rice yellow mottle virus during serial inoculations is due to a single substitution in the genome-linked viral protein VPg. J. Gen. Virol. 87: 1369-1373. https://doi.org/10.1099/vir.0.81659-0
  57. Heo, K.-J., Kwon, S.-J., Kim, M.-K., Kwak, H.-R., Han, S.-J., Kwon, M.-J. et al. 2020. Newly emerged resistance-breaking variants of cucumber mosaic virus represent ongoing host-interactive evolution of an RNA virus. Virus Evol. 6: veaa070. https://doi.org/10.1093/ve/veaa070
  58. Jeger, M. J., Madden, L. V. and Van Den Bosch, F. 2018. Plant virus epidemiology: applications and prospects for mathematical modeling and analysis to improve understanding and disease control. Plant Dis. 102: 837-854. https://doi.org/10.1094/pdis-04-17-0612-fe
  59. Jenner, C. E., Sanchez, F., Nettleship, S. B., Foster, G. D., Ponz, F. and Walsh, J. A. 2000. The cylindrical inclusion gene of Turnip mosaic virus encodes a pathogenic determinant to the Brassica resistance gene TuRB01. Mol. Plant-Microbe Interact. 13: 1102-1108. https://doi.org/10.1094/mpmi.2000.13.10.1102
  60. Johansen, I. E., Lund, O. S., Hjulsager, C. K. and Laursen, J. 2001. Recessive resistance in Pisum sativum and potyvirus pathotype resolved in a gene-for-cistron correspondence between host and virus. J. Virol. 75: 6609-6614. https://doi.org/10.1128/JVI.75.14.6609-6614.2001
  61. Jones, R. A. C. 1982. Breakdown of potato virus X resistance gene NX: selection of a group four strain from strain group three. Plant Pathol. 31: 325-331. https://doi.org/10.1111/j.1365-3059.1982.tb01285.x
  62. Jones, R. A. C. 1985. Further studies on resistance-breaking strains of potato virus X. Plant Pathol. 34: 182-189. https://doi.org/10.1111/j.1365-3059.1985.tb01348.x
  63. Joshi, R. K. and Nayak, S. 2010. Gene pyramiding-A broad spectrum technique for developing durable stress resistance in crops. Biotechnol. Mol. Biol. Rev. 5: 51-60.
  64. Kang, B.-C., Yeam, I. and Jahn, M. M. 2005. Genetics of plant virus resistance. Annu. Rev. Phytopathol. 43: 581-621. https://doi.org/10.1146/annurev.phyto.43.011205.141140
  65. Kang, W.-H., Hoang, N. H., Yang, H.-B., Kwon, J.-K., Jo, S.-H., Seo, J.-K. et al. 2010. Molecular mapping and characterization of a single dominant gene controlling CMV resistance in peppers (Capsicum annuum L.). Theor. Appl. Genet. 120: 1587-1596. https://doi.org/10.1007/s00122-010-1278-9
  66. Kang, W.-H., Seo, J.-K., Chung, B. N., Kim, K.-H. and Kang, B.-C. 2012. Helicase domain encoded by Cucumber mosaic virus RNA1 determines systemic infection of Cmr1 in pepper. PLoS ONE 7: e43136. https://doi.org/10.1371/journal.pone.0043136
  67. Keen, N. T. 1990. Gene-for-gene complementarity in plant-pathogen interactions. Annu. Rev. Genet. 24: 447-463. https://doi.org/10.1146/annurev.ge.24.120190.002311
  68. Keller, K. E., Johansen, I. E., Martin, R. R. and Hampton, R. O. 1998. Potyvirus genome-linked protein (VPg) determines pea seedborne mosaic virus pathotype-specific virulence in Pisum sativum. Mol. Plant-Microbe Interact. 11: 124-130. https://doi.org/10.1094/mpmi.1998.11.2.124
  69. Kim, M.-K., Seo, J.-K., Kwak, H.-R., Kim, J.-S., Kim, K.-H., Cha, B.-J. et al. 2014. Molecular genetic analysis of cucumber mosaic virus populations infecting pepper suggests unique patterns of evo-lution in Korea. Phytopathology 104: 993-1000. https://doi.org/10.1094/PHYTO-10-13-0275-R
  70. Kitajima, M., Sassi, H. P. and Torrey, J. R. 2018. Pepper mild mottle virus as a water quality indicator. npj Clean Water 1: 19. https://doi.org/10.1038/s41545-018-0019-5
  71. Knorr, D. A. and Dawson, W. O. 1988. A point mutation in the tobacco mosaic virus capsid protein gene induces hypersensitivity in Nicotiana sylvestris. Proc. Natl. Acad. Sci. U. S. A. 85: 170-174. https://doi.org/10.1073/pnas.85.1.170
  72. Kobayashi, K., Sekine, K.-T. and Nishiguchi, M. 2014. Breakdown of plant virus resistance: can we predict and extend the durability of virus resistance? J. Gen. Plant Pathol. 80: 327-336. https://doi.org/10.1007/s10327-014-0527-1
  73. Kurath, G. and Palukaitis, P. 1990. Serial passage of infectious transcripts of a cucumber mosaic virus satellite RNA clone results in sequence heterogeneity. Virology 176: 8-15. https://doi.org/10.1016/0042-6822(90)90224-F
  74. Kutnjak, D., Rupar, M., Gutierrez-Aguirre, I., Curk, T., Kreuze, J. F., Ravnikar, M. et al. 2015. Deep sequencing of virus-derived small interfering RNAs and RNA from viral particles shows highly similar mutational landscapes of a plant virus population. J. Virol. 89: 4760-4769. https://doi.org/10.1128/jvi.03685-14
  75. Kwon, S.-J., Cho, Y.-E., Kwon, O.-H., Kang, H.-G. and Seo, J.-K. 2021. Resistance-breaking tomato spotted wilt virus variant that recently occurred in pepper in South Korea is a genetic reassortant. Plant Dis. Advanced online publication. https://doi.org/10.1094/PDIS-01-21-0205-SC.
  76. Lecoq, H., Moury, B., Desbiez, C., Palloix, A. and Pitrat, M. 2004. Durable virus resistance in plants through conventional approaches: a challenge. Virus Res. 100: 31-39. https://doi.org/10.1016/j.virusres.2003.12.012
  77. Lellis, A. D., Kasschau, K. D., Whitham, S. A. and Carrington, J. C. 2002. Loss-of-susceptibility mutants of Arabidopsis thaliana reveal an essential role for eIF(iso)4E during potyvirus infection. Curr. Biol. 12: 1046-1051. https://doi.org/10.1016/S0960-9822(02)00898-9
  78. Lindbo, J. A. and Falk, B. W. 2017. The impact of "coat protein-mediated virus resistance" in applied plant pathology and basic research. Phytopathology 107: 624-634. https://doi.org/10.1094/PHYTO-12-16-0442-RVW
  79. Liu, J.-Z., Fang, Y. and Pang, H. 2016. The current status of the soybean-Soybean mosaic virus (SMV) pathosystem. Front. Microbiol. 7: 1906. https://doi.org/10.3389/fmicb.2016.01906
  80. Lopez, C., Aramburu, J., Galipienso, L., Soler, S., Nuez, F. and Rubio, L. 2011. Evolutionary analysis of tomato Sw-5 resistance-breaking isolates of Tomato spotted wilt virus. J. Gen. Virol. 92: 210-215. https://doi.org/10.1099/vir.0.026708-0
  81. Macedo, M. A., Rojas, M. R. and Gilbertson, R. L. 2019. First report of a resistance-breaking strain of Tomato spotted wilt orthotospovirus infecting sweet pepper with the Tsw resistance gene in California, U.S.A. Plant Dis. 103: 1048.
  82. Mahajan, S. K., Chisholm, S. T., Whitham, S. A. and Carrington, J. C. 1998. Identification and characterization of a locus (RTM1) that restricts long-distance movement of tobacco etch virus in Arabidopsis thaliana. Plant J. 14: 177-186. https://doi.org/10.1046/j.1365-313X.1998.00105.x
  83. Malcuit, I., Marano, M. R., Kavanagh, T. A., De Jong, W., Forsyth, A. and Baulcombe, D. C. 1999. The 25-kDa movement protein of PVX elicits Nb-mediated hypersensitive cell death in potato. Mol. Plant-Microbe Interact. 12: 536-543. https://doi.org/10.1094/MPMI.1999.12.6.536
  84. Mandadi, K. K. and Scholthof, K.-B. G. 2013. Plant immune responses against viruses: how does a virus cause disease? Plant Cell 25: 1489-1505. https://doi.org/10.1105/tpc.113.111658
  85. Mattenberger, F., Vila-Nistal, M. and Geller, R. 2021. Increased RNA virus population diversity improves adaptability. Sci. Rep. 11: 6824. https://doi.org/10.1038/s41598-021-86375-z
  86. Mauck, K. E. 2016. Variation in virus effects on host plant phenotypes and insect vector behavior: what can it teach us about virus evolution? Curr. Opin. Virol. 21: 114-123. https://doi.org/10.1016/j.coviro.2016.09.002
  87. Mauck, K. E., Chesnais, Q. and Shapiro, L. R. 2018. Evolutionary determinants of host and vector manipulation by plant viruses. Adv. Virus Res. 101: 189-250. https://doi.org/10.1016/bs.aivir.2018.02.007
  88. McLeish, M. J., Fraile, A. and Garcia-Arenal, F. 2019. Evolution of plant-virus interactions: host range and virus emergence. Curr. Opin. Virol. 34: 50-55. https://doi.org/10.1016/j.coviro.2018.12.003
  89. Meshi, T., Motoyoshi, F., Adachi, A., Watanabe, Y., Takamatsu, N. and Okada, Y. 1988. Two concomitant base substitutions in the putative replicase genes of tobacco mosaic virus confer the ability to overcome the effects of a tomato resistance gene, Tm-1. EMBO J. 7: 1575-1581. https://doi.org/10.1002/j.1460-2075.1988.tb02982.x
  90. Meshi, T., Motoyoshi, F., Maeda, T., Yoshiwoka, S., Watanabe, H. and Okada, Y. 1989. Mutations in the tobacco mosaic virus 30-kD protein gene overcome Tm-2 resistance in tomato. Plant Cell 1: 515-522. https://doi.org/10.1105/tpc.1.5.515
  91. Mine, A. and Okuno, T. 2012. Composition of plant virus RNA replicase complexes. Curr. Opin. Virol. 2: 669-675. https://doi.org/10.1016/j.coviro.2012.09.014
  92. Moffett, P. 2009. Mechanisms of recognition in dominant R gene mediated resistance. Adv. Virus Res. 75: 1-33. https://doi.org/10.1016/S0065-3527(09)07501-0
  93. Montarry, J., Cartier, E., Jacquemond, M., Palloix, A. and Moury, B. 2012. Virus adaptation to quantitative plant resistance: erosion or breakdown? J. Evol. Biol. 25: 2242-2252. https://doi.org/10.1111/j.1420-9101.2012.02600.x
  94. Moreno-Perez, M. G., Garcia-Luque, I., Fraile, A. and Garcia-Arenal, F. 2016. Mutations that determine resistance breaking in a plant RNA virus have pleiotropic effects on its fitness that depend on the host environment and on the type, single or mixed, of infection. J. Virol. 90: 9128-9137. https://doi.org/10.1128/JVI.00737-16
  95. Morley, V. J. and Turner, P. E. 2017. Dynamics of molecular evolution in RNA virus populations depend on sudden versus gradual environmental change. Evolution 71: 872-883. https://doi.org/10.1111/evo.13193
  96. Morozov, S. Y., Dolja, V. V. and Atabekov, J. G. 1989. Probable reassortment of genomic elements among elongated RNA-containing plant viruses. J. Mol. Evol. 29: 52-62. https://doi.org/10.1007/BF02106181
  97. Nakahara, K. S., Shimada, R., Choi, S.-H., Yamamoto, H., Shao, J. and Uyeda, I. 2010. Involvement of the P1 cistron in overcoming eIF4E-mediated recessive resistance against Clover yellow vein virus in Pea. Mol. Plant-Microbe Interact. 23: 1460-1469. https://doi.org/10.1094/MPMI-11-09-0277
  98. Nelson, R. R. 1978. Genetics of horizontal resistance to plant diseases. Annu. Rev. Phytopathol. 16: 359-378. https://doi.org/10.1146/annurev.py.16.090178.002043
  99. Nutter, F. W. Jr., Kuhn, C. W. and All, J. N. 1989. Models to estimate yield losses in bell pepper caused by tobacco etch virus epidemics. Phytopathology 79: 1213.
  100. Ozturk, P. K., Argun, D., Baloglu, S. and Keles, D. 2020. Effect of tobacco etch virus (TEV) on yield and quality of red pepper in Turkey. Acta Sci. Pol. Hortorum Cultus 19: 101-111.
  101. Palukaitis, P. and Yoon, J.-Y. 2020. R gene mediated defense against viruses. Curr. Opin. Virol. 45: 1-7. https://doi.org/10.1016/j.coviro.2020.04.001
  102. Parlevliet, J. E. 2002. Durability of resistance against fungal, bacterial and viral pathogens: present situation. Euphytica 124: 147-156. https://doi.org/10.1023/A:1015601731446
  103. Pelham, J., Fletcher, J. T. and Hawkins, J. H. 2008. The establishment of a new strain of tobacco mosaic virus resulting from the use of resistant varieties of tomato. Ann. Appl. Biol. 65: 293-297. https://doi.org/10.1111/j.1744-7348.1970.tb04590.x
  104. Pinel-Galzi, A., Dubreuil-Tranchant, C., Hebrard, E., Mariac, C., Ghesquiere, A. and Albar, L. 2016. Mutations in Rice yellow mottle virus polyprotein P2a involved in RYMV2 gene resistance breakdown. Front. Plant Sci. 7: 1779.
  105. Piquerez, S. J. M., Harvey, S. E., Beynon, J. L. and Ntoukakis, V. 2014. Improving crop disease resistance: lessons from research on Arabidopsis and tomato. Front. Plant Sci. 5: 671. https://doi.org/10.3389/fpls.2014.00671
  106. Rachmadi, A. T., Kitajima, M., Watanabe, K., Okabe, S. and Sano, D. 2018. Disinfection as a selection pressure on RNA virus evolution. Environ. Sci. Technol. 52: 2434-2435. https://doi.org/10.1021/acs.est.8b00590
  107. Roossinck, M. J. 1997. Mechanisms of plant virus evolution. Annu. Rev. Phytopathol. 35: 191-209. https://doi.org/10.1146/annurev.phyto.35.1.191
  108. Roossinck, M. J. 2003. Plant RNA virus evolution. Curr. Opin. Microbiol. 6: 406-409. https://doi.org/10.1016/S1369-5274(03)00087-0
  109. Roossinck, M. J. 2005. Symbiosis versus competition in plant virus evolution. Nat. Rev. Microbiol. 3: 917-924. https://doi.org/10.1038/nrmicro1285
  110. Ruffel, S., Dussault, M.-H., Palloix, A., Moury, B., Bendahmane, A., Robaglia, C. et al. 2002. A natural recessive resistance gene against potato virus Y in pepper corresponds to the eukaryotic initiation factor 4E (eIF4E). Plant J. 32: 1067-1075. https://doi.org/10.1046/j.1365-313X.2002.01499.x
  111. Saito, T., Meshi, T., Takamatsu, N. and Okada, Y. 1987. Coat protein gene sequence of tobacco mosaic virus encodes a host response determinant. Proc. Natl. Acad. Sci. U. S. A. 84: 6074-6077. https://doi.org/10.1073/pnas.84.17.6074
  112. Sardanyes, J. and Elena, S. F. 2011. Quasispecies spatial models for RNA viruses with different replication modes and infection strategies. PLoS ONE 6: e24884. https://doi.org/10.1371/journal.pone.0024884
  113. Schneider W. L. and Roossinck M. J. 2001. Genetic diversity in RNA virus quasispecies is controlled by host-virus interactions. J. Virol. 75: 6566-6571. https://doi.org/10.1128/JVI.75.14.6566-6571.2001
  114. Seo, J.-K., Lee, S.-H. and Kim, K.-H. 2009. Strain-specific cylindrical inclusion protein of soybean mosaic virus elicits extreme resistance and a lethal systemic hypersensitive response in two resistant soybean cultivars. Mol. Plant-Microbe Interact. 22: 1151-1159. https://doi.org/10.1094/mpmi-22-9-1151
  115. Simon, A. E. and Bujarski, J. J. 1994. RNA-RNA recombination and evolution in virus-infected plants. Annu. Rev. Phytopathol. 32: 337-362. https://doi.org/10.1146/annurev.py.32.090194.002005
  116. Sztuba-Solinska, J., Urbanowicz, A., Figlerowicz, M. and Bujarski, J. J. 2011. RNA-RNA recombination in plant virus replication and evolution. Annu. Rev. Phytopathol. 49: 415-443. https://doi.org/10.1146/annurev-phyto-072910-095351
  117. Thresh, J. M. 2006. Plant virus epidemiology: the concept of host genetic vulnerability. Adv. Virus Res. 67: 89-125. https://doi.org/10.1016/S0065-3527(06)67003-6
  118. Tran, P.-T., Widyasari, K., Seo, J.-K. and Kim, K.-H. 2018. Isolation and validation of a candidate Rsv3 gene from a soybean genotype that confers strain-specific resistance to soybean mosaic virus. Virology 513: 153-159. https://doi.org/10.1016/j.virol.2017.10.014
  119. Traore, O., Pinel-Galzi, A., Issaka, S., Poulicard, N., Aribi, J., Ake, S. et al. 2010. The adaptation of Rice yellow mottle virus to the eIF(iso)4G-mediated rice resistance. Virology 408: 103-108. https://doi.org/10.1016/j.virol.2010.09.007
  120. Tromas, N., Zwart, M. P., Poulain, M. and Elena, S. F. 2014. Estimation of the in vivo recombination rate for a plant RNA virus. J. Gen. Virol. 95: 724-732. https://doi.org/10.1099/vir.0.060822-0
  121. Truniger, V. and Aranda, M. A. 2009. Recessive resistance to plant viruses. Adv. Virus Res. 75: 119-159. https://doi.org/10.1016/S0065-3527(09)07504-6
  122. Tsuda, S., Kirita, M. and Watanabe, Y. 1998. Characterization of a pepper mild mottle tobamovirus strain capable of overcoming the L3 gene-mediated resistance, distinct from the resistance-breaking Italian isolate. Mol. Plant-Microbe Interact. 11: 327-331. https://doi.org/10.1094/MPMI.1998.11.4.327
  123. Weber, H., Schultze, S. and Pfitzner, A. J. 1993. Two amino acid substitutions in the tomato mosaic virus 30-kilodalton movement protein confer the ability to overcome the Tm-2(2) resistance gene in the tomato. J. Virol. 67: 6432-6438. https://doi.org/10.1128/jvi.67.11.6432-6438.1993
  124. White, P. S., Morales, F. and Roossinck, M. J. 1995. Interspecific reassortment of genomic segments in the evolution of cucumoviruses. Virology 207: 334-337. https://doi.org/10.1006/viro.1995.1088
  125. Yoon, J.-Y., Her, N.-H., Cho, I. S., Chung, B. N. and Choi, S.-K. 2021. First report of a resistance-breaking strain of Tomato spotted wilt orthotospovirus infecting Capsicum annuum carrying the Tsw resistance gene in South Korea. Plant Dis. Advanced online publication. https://doi.org/10.1094/PDIS-09-20-1952-PDN.
  126. Zaccomer, B., Haenni, A. L. and Macaya, G. 1995. The remarkable variety of plant RNA virus genomes. J. Gen. Virol. 76(Pt 2): 231-247. https://doi.org/10.1099/0022-1317-76-2-231