참고문헌
- Bossy-Wetzel, E., Bakiri, L. and Yaniv, M. (1997) Induction of apoptosis by the transcription factor c-Jun. EMBO J. 16, 1695-1709. https://doi.org/10.1093/emboj/16.7.1695
- Bustamante, H. A., Gonzalez, A. E., Cerda-Troncoso, C., Shaughnessy, R., Otth, C., Soza, A. and Burgos, P. V. (2018) Interplay between the autophagy-lysosomal pathway and the ubiquitin-proteasome system: a target for therapeutic development in Alzheimer's disease. Front. Cell. Neurosci. 12, 126. https://doi.org/10.3389/fncel.2018.00126
- Ciechanover, A. (2005) Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat. Rev. Mol. Cell Biol. 6, 79-87. https://doi.org/10.1038/nrm1552
- Del Prete, D., Rice, R. C., Rajadhyaksha, A. M. and D'Adamio, L. (2016) Amyloid precursor protein (APP) may act as a substrate and a recognition unit for CRL4CRBN and Stub1 E3 ligases facilitating ubiquitination of proteins involved in presynaptic functions and neurodegeneration. J. Biol. Chem. 291, 17209-17227. https://doi.org/10.1074/jbc.M116.733626
- Dikic, I. (2017) Proteasomal and autophagic degradation systems. Annu. Rev. Biochem. 86, 193-224. https://doi.org/10.1146/annurev-biochem-061516-044908
- Ding, W. X., Ni, H. M., Gao, W., Hou, Y. F., Melan, M. A., Chen, X., Stolz, D. B., Shao, Z. M. and Yin, X. M. (2007) Differential effects of endoplasmic reticulum stress-induced autophagy on cell survival. J. Biol. Chem. 282, 4702-4710. https://doi.org/10.1074/jbc.M609267200
- Fuest, M., Willim, K., MacNelly, S., Fellner, N., Resch, G. P., Blum, H. E. and Hasselblatt, P. (2012) The transcription factor c-Jun protects against sustained hepatic endoplasmic reticulum stress thereby promoting hepatocyte survival. Hepatology 55, 408-418. https://doi.org/10.1002/hep.24699
- Gal, J., Strom, A. L., Kilty, R., Zhang, F. and Zhu, H. (2007) p62 accumulates and enhances aggregate formation in model systems of familial amyotrophic lateral sclerosis. J. Biol. Chem. 282, 11068-11077. https://doi.org/10.1074/jbc.M608787200
- Geetha, T., Seibenhener, M. L., Chen, L., Madura, K. and Wooten, M. W. (2008) p62 serves as a shuttling factor for TrkA interaction with the proteasome. Biochem. Biophys. Res. Commun. 374, 33-37. https://doi.org/10.1016/j.bbrc.2008.06.082
- Grice, G. L. and Nathan, J. A. (2016) The recognition of ubiquitinated proteins by the proteasome. Cell. Mol. Life Sci. 73, 3497-3506. https://doi.org/10.1007/s00018-016-2255-5
- Halazonetis, T. D., Georgopoulos, K., Greenberg, M. E. and Leder, P. (1988) c-Jun dimerizes with itself and with c-Fos, forming complexes of different DNA binding affinities. Cell 55, 917-924. https://doi.org/10.1016/0092-8674(88)90147-x
- Hettinger, K., Vikhanskaya, F., Poh, M. K., Lee, M. K., de Belle, I., Zhang, J. T., Reddy, S. A. G. and Sabapathy, K. (2006) c-Jun promotes cellular survival by suppression of PTEN. Cell Death Differ. 14, 218-229. https://doi.org/10.1038/sj.cdd.4401946
- Hewitt, G., Carroll, B., Sarallah, R., Correia-Melo, C., Ogrodnik, M., Nelson, G., Otten, E. G., Manni, D., Antrobus, R., Morgan, B. A., von Zglinicki, T., Jurk, D., Seluanov, A., Gorbunova, V., Johansen, T., Passos, J. F. and Korolchuk, V. I. (2016) SQSTM1/p62 mediates crosstalk between autophagy and the UPS in DNA repair. Autophagy 12, 1917-1930. https://doi.org/10.1080/15548627.2016.1210368
- Hou, X. O., Si, J. M., Ren, H. G., Chen, D., Wang, H. F., Ying, Z., Hu, Q. S., Gao, F. and Wang, G. H. (2015) Parkin represses 6-hydroxydopamine-induced apoptosis via stabilizing scaffold protein p62 in PC12 cells. Acta Pharmacol. Sin. 36, 1300-1307. https://doi.org/10.1038/aps.2015.54
- Huang, X., Wang, X. N., Yuan, X. D., Wu, W. Y., Lobie, P. E. and Wu, Z. (2018) XIAP facilitates breast and colon carcinoma growth via promotion of p62 depletion through ubiquitination-dependent proteasomal degradation. Oncogene 38, 1448-1460. https://doi.org/10.1038/s41388-018-0513-8
- Ichimura, Y., Waguri, S., Sou, Y. S., Kageyama, S., Hasegawa, J., Ishimura, R., Saito, T., Yang, Y., Kouno, T., Fukutomi, T., Hoshii, T., Hirao, A., Takagi, K., Mizushima, T., Motohashi, H., Lee, M. S., Yoshimori, T., Tanaka, K., Yamamoto, M. and Komatsu, M. (2013) Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Mol. Cell 51, 618-631. https://doi.org/10.1016/j.molcel.2013.08.003
- Iurlaro, R. and Munoz-Pinedo, C. (2016) Cell death induced by endoplasmic reticulum stress. FEBS J. 283, 2640-2652. https://doi.org/10.1111/febs.13598
- Jain, A., Lamark, T., Sjottem, E., Larsen, K. B., Awuh, J. A., Overvatn, A., McMahon, M., Hayes, J. D. and Johansen, T. (2010) p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J. Biol. Chem. 285, 22576-22591. https://doi.org/10.1074/jbc.M110.118976
- Jian, Y., Gao, W., Geng, C., Zhou, H., Leng, Y., Li, Y. and Chen, W. (2017) Arsenic trioxide potentiates sensitivity of multiple myeloma cells to lenalidomide by upregulating cereblon expression levels. Oncol. Lett. 14, 3243-3248. https://doi.org/10.3892/ol.2017.6502
- Jin, Z., Li, Y., Pitti, R., Lawrence, D., Pham, V. C., Lill, J. R. and Ashkenazi, A. (2009) Cullin 3-based polyubiquitination and p62-dependent aggregation of caspase-8 mediate extrinsic apoptosis signaling. Cell 137, 721-735. https://doi.org/10.1016/j.cell.2009.03.015
- Komatsu, M., Kurokawa, H., Waguri, S., Taguchi, K., Kobayashi, A., Ichimura, Y., Sou, Y. S., Ueno, I., Sakamoto, A., Tong, K. I., Kim, M., Nishito, Y., Iemura, S., Natsume, T., Ueno, T., Kominami, E., Motohashi, H., Tanaka, K. and Yamamoto, M. (2010) The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat. Cell Biol. 12, 213-223. https://doi.org/10.1038/ncb2021
- Korolchuk, V. I., Mansilla, A., Menzies, F. M. and Rubinsztein, D. C. (2009) Autophagy inhibition compromises degradation of ubiquitin-proteasome pathway substrates. Mol. Cell 33, 517-527. https://doi.org/10.1016/j.molcel.2009.01.021
- Korolchuk, V. I., Menzies, F. M. and Rubinsztein, D. C. (2010) Mechanisms of cross-talk between the ubiquitin-proteasome and autophagy-lysosome systems. FEBS Lett. 584, 1393-8139. https://doi.org/10.1016/j.febslet.2009.12.047
- Kouzarides, T. and Ziff, E. (1988) The role of the leucine zipper in the fos-jun interaction. Nature 336, 646-651. https://doi.org/10.1038/336646a0
- Lamark, T., Kirkin, V., Dikic, I. and Johansen, T. (2009) NBR1 and p62 as cargo receptors for selective autophagy of ubiquitinated targets. Cell Cycle 8, 1986-1990. https://doi.org/10.4161/cc.8.13.8892
- Levine, B. and Kroemer, G. (2008) Autophagy in the pathogenesis of disease. Cell 132, 27-42. https://doi.org/10.1016/j.cell.2007.12.018
- Lin, J. F., Lin, Y. C., Tsai, T. F., Chen, H. E., Chou, K. Y. and Hwang, T. I. S. (2017) Cisplatin induces protective autophagy through activation of BECN1 in human bladder cancer cells. Drug Des. Devel. Ther. 11, 1517-1533. https://doi.org/10.2147/DDDT.S126464
- Lippai, M. and Low, P. (2014) The role of the selective adaptor p62 and ubiquitin-like proteins in autophagy. Biomed Res. Int. 2014, 832704. https://doi.org/10.1155/2014/832704
- Liu, W. J., Ye, L., Huang, W. F., Guo, L. J., Xu, Z. G., Wu, H. L., Yang, C. and Liu, H. F. (2016) p62 links the autophagy pathway and the ubiqutin-proteasome system upon ubiquitinated protein degradation. Cell. Mol. Biol. Lett. 21, 29. https://doi.org/10.1186/s11658-016-0031-z
- Liu, Y., Kern, J. T., Walker, J. R., Johnson, J. A., Schultz, P. G. and Luesch, H. (2007) A genomic screen for activators of the antioxidant response element. Proc. Natl. Acad. Sci. U.S.A. 104, 5205-5210. https://doi.org/10.1073/pnas.0700898104
- Mackman, N., Brand, K. and Edgington, T. S. (1991) Lipopolysaccharide-mediated transcriptional activation of the human tissue factor gene in THP-1 monocytic cells requires both activator protein 1 and nuclear factor kappa B binding sites. J. Exp. Med. 174, 1517-1526. https://doi.org/10.1084/jem.174.6.1517
- Marino, S., Petrusca, D. N., Silberman, R., Toscani, D., Anderson, J. L., Giuliani, N., Xie, X. Q., Kurihara, N. and Roodman, G. D. (2017) Inhibition of p62-ZZ domain-mediated signaling overcomes bortezomib resistance in multiple myeloma cells independent of their p53 status. Blood 130, 4421.
- Masud, A., Mohapatra, A., Lakhani, S. A., Ferrandino, A., Hakem, R. and Flavell, R. A. (2007) Endoplasmic reticulum stress-induced death of mouse embryonic fibroblasts requires the intrinsic pathway of apoptosis. J. Biol. Chem. 282, 14132-14139. https://doi.org/10.1074/jbc.M700077200
- Meng, Q. and Xia, Y. (2011) c-Jun, at the crossroad of the signaling network. Protein Cell 2, 889-898. https://doi.org/10.1007/s13238-011-1113-3
- Milan, E., Perini, T., Resnati, M., Orfanelli, U., Oliva, L., Raimondi, A., Cascio, P., Bachi, A., Marcatti, M., Ciceri, F. and Cenci, S. (2015) A plastic SQSTM1/p62-dependent autophagic reserve maintains proteostasis and determines proteasome inhibitor susceptibility in multiple myeloma cells. Autophagy 11, 1161-1178. https://doi.org/10.1080/15548627.2015.1052928
- Moon, J. L., Kim, S. Y., Shin, S. W. and Park, J. W. (2012) Regulation of brefeldin A-induced ER stress and apoptosis by mitochondrial NADP+-dependent isocitrate dehydrogenase. Biochem. Biophys. Res. Commun. 417, 760-764. https://doi.org/10.1016/j.bbrc.2011.12.030
- Narendra, D., Kane, L. A., Hauser, D. N., Fearnley, I. M. and Youle, R. J. (2010) p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both. Autophagy 6, 1090-1106. https://doi.org/10.4161/auto.6.8.13426
- Ogata, M., Hino, S., Saito, A., Morikawa, K., Kondo, S., Kanemoto, S., Murakami, T., Taniguchi, M., Tanii, I., Yoshinaga, K., Shiosaka, S., Hammarback, J. A., Urano, F. and Imaizumi, K. (2006) Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol. Cell. Biol. 26, 9220-9231. https://doi.org/10.1128/MCB.01453-06
- Pankiv, S., Clausen, T. H., Lamark, T., Brech, A., Bruun, J. A., Outzen, H., Overvatn, A., Bjorkoy, G. and Johansen, T. (2007) p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282, 24131-24145. https://doi.org/10.1074/jbc.M702824200
- Rubinsztein, D. C. (2006) The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443, 780-786. https://doi.org/10.1038/nature05291
- Sano, R. and Reed, J. C. (2013) ER stress-induced cell death mechanisms. Biochim. Biophys. Acta 1833, 3460-3470. https://doi.org/10.1016/j.bbamcr.2013.06.028
- Seibenhener, M. L., Babu, J. R., Geetha, T., Wong, H. C., Krishna, N. R. and Wooten, M. W. (2004) Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation. Mol. Cell. Biol. 24, 8055-8068. https://doi.org/10.1128/MCB.24.18.8055-8068.2004
- Shaulian, E. and Karin, M. (2002) AP-1 as a regulator of cell life and death. Nat. Cell Biol. 4, E131-E136. https://doi.org/10.1038/ncb0502-e131
- Shin, W. H., Park, J. H. and Chung, K. C. (2020) The central regulator p62 between ubiquitin proteasome system and autophagy and its role in the mitophagy and Parkinson's disease. BMB Rep. 53, 56-63. https://doi.org/10.5483/BMBRep.2020.53.1.283
- Shvets, E., Fass, E., Scherz-Shouval, R. and Elazar, Z. (2008) The N-terminus and Phe52 residue of LC3 recruit p62/SQSTM1 into autophagosomes. J. Cell Sci. 121, 2685-2695. https://doi.org/10.1242/jcs.026005
- Song, P., Li, S., Wu, H., Gao, R., Rao, G., Wang, D., Chen, Z., Ma, B., Wang, H., Sui, N., Deng, H., Zhang, Z., Tang, T., Tan, Z., Han, Z., Lu, T., Zhu, Y. and Chen, Q. (2016) Parkin promotes proteasomal degradation of p62: implication of selective vulnerability of neuronal cells in the pathogenesis of Parkinson's disease. Protein Cell 7, 114-129. https://doi.org/10.1007/s13238-015-0230-9
- Tang, D., Kang, R., Berghe, T. V., Vandenabeele, P. and Kroemer, G. (2019) The molecular machinery of regulated cell death. Cell Res. 29, 347-364. https://doi.org/10.1038/s41422-019-0164-5
- Tian, Z., Wang, C., Hu, C., Tian, Y., Liu, J. and Wang, X. (2014) Autophagic-lysosomal inhibition compromises ubiquitin-proteasome system performance in a p62 dependent manner in cardiomyocytes. PLoS ONE 9, e100715. https://doi.org/10.1371/journal.pone.0100715
- Tilija Pun, N., Jang, W. J. and Jeong, C. H. (2020) Role of autophagy in regulation of cancer cell death/apoptosis during anti-cancer therapy: focus on autophagy flux blockade. Arch. Pharm. Res. 43, 475-488. https://doi.org/10.1007/s12272-020-01239-w
- Wang, C. and Wang, X. (2015) The interplay between autophagy and the ubiquitin-proteasome system in cardiac proteotoxicity. Biochim. Biophys. Acta 1852, 188-194. https://doi.org/10.1016/j.bbadis.2014.07.028
- Wang, D., Xu, Q., Yuan, Q., Jia, M., Niu, H., Liu, X., Zhang, J., Young, C. Y. and Yuan, H. (2019) Proteasome inhibition boosts autophagic degradation of ubiquitinated-AGR2 and enhances the antitumor efficiency of bevacizumab. Oncogene 38, 3458-3474. https://doi.org/10.1038/s41388-019-0675-z
- Wu, D., Hao, Z., Ren, H. and Wang, G. (2018) Loss of VAPB regulates autophagy in a Beclin 1-dependent manner. Neurosci. Bull. 34, 1037-1046. https://doi.org/10.1007/s12264-018-0276-9
- Yamaguchi, H. and Wang, H. G. (2004) CHOP is involved in endoplasmic reticulum stress-induced apoptosis by enhancing DR5 expression in human carcinoma cells. J. Biol. Chem. 279, 45495-45502. https://doi.org/10.1074/jbc.M406933200
- Yang, J., Huang, M., Zhou, L., He, X., Jiang, X., Zhang, Y. and Xu, G. (2018) Cereblon suppresses lipopolysaccharide-induced inflammatory response through promoting the ubiquitination and degradation of c-Jun. J. Biol. Chem. 293, 10141-10157. https://doi.org/10.1074/jbc.RA118.002246
- Zaffagnini, G., Savova, A., Danieli, A., Romanov, J., Tremel, S., Ebner, M., Peterbauer, T., Sztacho, M., Trapannone, R., Tarafder, A. K., Sachse, C. and Martens, S. (2018) p62 filaments capture and present ubiquitinated cargos for autophagy. EMBO J. 37, e98308. https://doi.org/10.15252/embj.201798308
- Zhang, Y. B., Gong, J. L., Xing, T. Y., Zheng, S. P. and Ding, W. (2013) Autophagy protein p62/SQSTM1 is involved in HAMLET-induced cell death by modulating apotosis in U87MG cells. Cell Death Dis. 4, e550. https://doi.org/10.1038/cddis.2013.77
- Zhao, P., Xiao, X., Kim, A. S., Leite, M. F., Xu, J., Zhu, X., Ren, J. and Li, J. (2008) c-Jun inhibits thapsigargin-induced ER stress through up-regulation of DSCR1/Adapt78. Exp. Biol. Med. (Maywood) 233, 1289-1300. https://doi.org/10.3181/0803-RM-84
- Zhou, L., Hao, Z., Wang, G. and Xu, G. (2018) Cereblon suppresses the formation of pathogenic protein aggregates in a p62-dependent manner. Hum. Mol. Genet. 27, 667-678. https://doi.org/10.1093/hmg/ddx433
- Zhou, L., Wang, H., Chen, D., Gao, F., Ying, Z. and Wang, G. (2014) p62/Sequestosome 1 regulates aggresome formation of pathogenic ataxin-3 with expanded polyglutamine. Int. J. Mol. Sci. 15, 14997-15010. https://doi.org/10.3390/ijms150914997
- Zhu, K., Dunner, K., Jr. and McConkey, D. J. (2010) Proteasome inhibitors activate autophagy as a cytoprotective response in human prostate cancer cells. Oncogene 29, 451-462. https://doi.org/10.1038/onc.2009.343
- Zhu, X., Huang, L., Gong, J., Shi, C., Wang, Z., Ye, B., Xuan, A., He, X., Long, D., Zhu, X., Ma, N. and Leng, S. (2017) NF-κB pathway link with ER stress-induced autophagy and apoptosis in cervical tumor cells. Cell Death Dis. 3, 17059. https://doi.org/10.1038/cddiscovery.2017.59
- Zhu, Y., Lei, Q., Li, D., Zhang, Y., Jiang, X., Hu, Z. and Xu, G. (2018) Proteomic and biochemical analyses reveal a novel mechanism for promoting protein ubiquitination and degradation by UFBP1, a key component of ufmylation. J. Proteome Res. 17, 1509-1520. https://doi.org/10.1021/acs.jproteome.7b00843
- Zotti, T., Scudiero, I., Settembre, P., Ferravante, A., Mazzone, P., D'Andrea, L., Reale, C., Vito, P. and Stilo, R. (2014) TRAF6-mediated ubiquitination of NEMO requires p62/sequestosome-1. Mol. Immunol. 58, 27-31. https://doi.org/10.1016/j.molimm.2013.10.015
피인용 문헌
- Proximity Labeling, Quantitative Proteomics, and Biochemical Studies Revealed the Molecular Mechanism for the Inhibitory Effect of Indisulam on the Proliferation of Gastric Cancer Cells vol.20, pp.9, 2021, https://doi.org/10.1021/acs.jproteome.1c00437