DOI QR코드

DOI QR Code

Regulation of UVB-induced DRAM1-Autophagy protein in HDF Cells by the Vitexin

Vitexin에 의한 HDF 세포에서 UVB 유도 DRAM1-오토파지 단백질

  • Byun, Seo-Jung (Division of Biological Engineering, Konkuk University) ;
  • Kang, Sang-Mo (Division of Biological Engineering, Konkuk University) ;
  • Cho, Young Jae (Division of Biological Engineering, Konkuk University)
  • Received : 2021.01.13
  • Accepted : 2021.02.20
  • Published : 2021.02.28

Abstract

This study was carried out to investigate the Fagopyrum esculentum (F. esculentum) extracts and vitexin are as the results of microarray, cell proliferation, cell wound recovery, cell cycle, microphage pattern and protein analysis for damage improvement caused by UVB-induced damage. Microarray results showed that UVB-induced increase in DRAM1, Atg2a and Atg13 genes was reduced in F. esculentum ethanol extract and vitexin. Cell proliferation, wound repair, cell cycle, and microphage patterns were improved in F. esculentum ethanol extract and vitexin, while buckwheat ethanol extract and vitexin decreased in both DRAM1, Beclin-1, and LC3 I/II in the vitexin treatment group and p-mTOR and survivin were all increased in protein analysis. It is thought that it can recover to normal and control autophagy, one of the causes of cell aging caused by UVB, to inhibit and regenerate cell death. F. esculentum ethanol extract and vitexin can be used as a functional cosmetic ingredient.

본 연구는 메밀 추출물과 비텍신을 이용하여 UVB 손상 개선에 대한 효과를 알아보기 위해 Microarray 분석, 세포의 증식, 세포 상처 회복, 세포주기, 마이크로파지의 생성 양상, 단백질 분석 등을 실시하였다. Microarray 분석 결과는 DRAM1, Atg2a 및 Atg13 유전자에서 UVB에 의해 증가 된 양상을 메밀 에탄올추출물과 비텍신에서 감소시켰다. 세포의 증식, 상처 회복, 주기 및 마이크로파지 양상에서는 메밀 에탄올추출물과 비텍신에서 정상 세포와 유사하게 개선되었으며, 단백질 분석에서 DRAM1, Beclin-1 및 LC3 I/II 모두 비텍신 처리군에서 감소하였고, p-mTOR 및 Survivin은 모두 증가 되었다. UVB에 의한 손상에서 메밀 에탄올추출물과 비텍신은 DRAM1, Atg2a 및 Atg13을 같이 컨트롤 하고 세포 증식, 상처 회복 및 주기를 정상으로 회복하며 UVB에 의한 세포 노화 발생원인 중 하나인 오토파지를 조절하여 세포의 사멸억제 및 재생하므로 기능성 화장품 성분으로 활용가능할 것으로 사료 된다.

Keywords

References

  1. C. Ji et al. (2012). Perifosine sensitizes UVB-induced apoptosis in skin cells: new implication of skin cancer prevention? Cell Signaling, 24(9), 1781-1789. DOI : 10.1016/j.cellsig.2012.05.003
  2. D. Denton & S. Kumar. (2019). Autophagy-dependent cell death. Cell death and Differentiation, 26(4), 605-616. DOI : 10.1038/s41418-018-0252-y
  3. H. She, Y. He, Y. Zhao & Z. Mao. (2018). Release the autophage brake on inflammation: The MAPK14/p38alpha-ULK1 pedal. Autophagy, 14(6), 1097-1098. DOI : 10.1080/15548627.2018.1446626
  4. K. Jo, G. Y. Bae, K. Cho, S. S. Park, H. J. Suh & K. B. Hong. (2020). An Anthocyanin-Enriched Extract from Vaccinium uliginosum Improves Signs of Skin Aging in UVB-Induced Photodamage. Antioxidants (Basel), 9(9), 844. DOI : 10.3390/antiox9090844
  5. E. H. Jeong. H. Yang, J. E. Kim & K. W. Lee. (2020). Safflower Seed Oil and Its Active Compound Acacetin Inhibit UVB-Induced Skin Photoaging. JMB Journal of Microbiolog and Biotechnology, 30(10), 1567-1573. DOI : 10.4014/jmb.2003.03064
  6. J. Zhong & L. Li. (2016). Skin-Derived Precursors against UVB-Induced Apoptosis via Bcl-2 and Nrf2 Upregulation. BioMed Research International, 2016(6894743). DOI : 10.1155/2016/6894743
  7. J. Y. Wang. P. H. Lu, W. W. Lin, Y. H. Wei, L. Y. Chiu, S. R. Chern, C. Hung & N. L. Wu. (2020). Galectin-3 regulates UVB-induced inflammation in skin. Journal of Dermatological Science, 98(2), 119-127. DOI : 10.1016/j.jdermsci.2020.03.007
  8. M. Boichuck, J. Zorea, M. Elkabets, M. Wolfson & V. E. Fraifeld. (2019). c-Met as a new marker of cellular senescence. Aging (Albany NY), 11(9), 2889-2897. DOI : 10.18632/aging.101961
  9. T. Lu, Z. Zhu, J. Wu, H. She, R. Han, H. Xu & Z. H. Qin. (2019). DRAM1 regulates autophagy and cell proliferation via inhibition of the phosphoinositide 3-kinase-Akt-mTOR-ribosomal protein S6 pathway. Cellular Communications and Signalling, 17(1), 1-15. DOI : 10.1186/s12964-019-0341-7
  10. S. W. Bark & H. S. Kim. (2020). Effects of Mung Bean (Phaseolus aureus L.) Supplementation on BUN and Hepatic Functional Enzyme Activities in Streptozotocin-induced Diabetic Rats. Journal of Environmental Science International, 29(4), 351-359. https://doi.org/10.5322/JESI.2020.29.4.351
  11. C. S. Lee & I. H. Han. (2019). Physiological Activities of Water and 80% Ethanol Extracts of Various Coffee Bean Residues. Korean Journal of Food and Cookery Science, 35(6), 591-600. https://doi.org/10.9724/kfcs.2019.35.6.591
  12. B. R. Sim, Y. S. Nam & J. B. Lee. (2019). Regulation of Wnt/β-catenin Signal Transduction in HT-29 Colon Cancer Cells by a Rhododendron brachycarpum Fraction. Journal of Life Science, 29(8), 871-878. DOI : 10.5352/JLS.2019.29.8.871
  13. T. Storm et al. (2020). A Semiautomated, Phenotypic, In Vitro Scratch Assay for Assessing Retinal Pigment Epithelial Cell Wound Healing. Journal of Ocular Pharmacology and Therapeutics, 36(4), 257-266. DOI : 10.1089/jop.2019.0116
  14. E. Shvets & Z. Elazar. (2008). Autophagy-independent incorporation of GFP-LC3 into protein aggregates is dependent on its interaction with p62/SQSTM1. Autophagy, 4(8), 1054-1056. https://doi.org/10.4161/auto.6823
  15. C. Chen et al. (2018). DRAM1 regulates the migration and invasion of hepatoblastoma cells via autophagy-EMT pathway. Oncology Letters, 16(2), 2427-2433. DOI : 10.3892/ol.2018.8937
  16. Meijer. AH & van der Vaart. M. (2014). DRAM1 promotes the targeting of mycobacteria to selective autophagy. Autophagy, 10(12), 2389-2391. DOI : 10.4161/15548627.2014.984280
  17. Xu. T. Denton. D & Kumar. S. (2019). Hedgehog and Wingless signaling are not essential for autophagy-dependent cell death.. Biochemical Pharmacology, 162(3-13). DOI : 10.1016/j.bcp.2018.10.027
  18. B. Zhou, J. Liu, R. Kang, D. J. Klionsky, G. Kroemer & D. Tang. (2020). Ferroptosis is a type of autophagy-dependent cell death. Seminars in Cancer Biology, 66, 89-100. DOI : 10.1016/j.semcancer.2019.03.002
  19. Y. Lu, T. Yu, J. Liu & L. Gu. (2018). Vitexin attenuates lipopolysaccharide-induced acute lung injury by controlling the Nrf2 pathway. PLoS One, 13(4), e0196405. DOI : 10.1371/journal.pone.0196405
  20. M. Hu, F. Li & W. Wang. (2018). Vitexin protects dopaminergic neurons in MPTP-induced Parkinson's disease through PI3K/Akt signaling pathway. Drug Design, Development and Therapy, 12, 565-573. DOI : 10.2147/DDDT.S156920
  21. S. Inamdar, A. Joshi, S. Malik, R. Boppana & S. Ghaskadbi. (2019). Vitexin alleviates non-alcoholic fatty liver disease by activating AMPK in high fat diet fed mice. Biochem Biophys Res Commun, 519(1), 106-112. DOI : 10.1016/j.bbrc.2019.08.139
  22. K. Ganesan, K. M. Ramkumar & B. Xu. (2020). Vitexin restores pancreatic beta-cell function and insulin signaling through Nrf2 and NF-kappaB signaling pathways. European Journal of Pharmacology, 888, 173606. DOI : 10.1016/j.ejphar.2020.173606
  23. F. Mangili et al. (2020). Beta-arrestin 2 is required for dopamine receptor type 2 inhibitory effects on AKT phosphorylation and cell proliferation in pituitary tumors. Neuroendocrinology. DOI : 10.1159/000509219
  24. L. Xi et al. (2020). SIRT1 promotes pulmonary artery endothelial cell proliferation by targeting the Akt signaling pathway. Experimental and Therapeutic Medicine, 20(6), 179. DOI : 10.3892/etm.2020.9309
  25. J. Yang, P. Cron, V. M. Good, V. Thompson, B. A. Hemmings. & D. Barford. (2002). Crystal structure of an activated Akt/protein kinase B ternary complex with GSK3-peptide and AMP-PNP. Nature Structural and Molecular Biology, 9(12), 940-944. DOI : 10.1038/nsb870
  26. A. Z. El-Hashim, M. A. Khajah, K. Y. Orabi, S. Balakrishnan, H. G. Sary & A. A. Abdelali. (2020). Onion Bulb Extract Downregulates EGFR/ERK1/2/AKT Signaling Pathway and Synergizes With Steroids to Inhibit Allergic Inflammation. Frontiers in Pharmacology, 11. DOI : 10.3389/fphar.2020.551683
  27. X. J. Chen et al. (2019). Ginkgo biloba extract-761 protects myocardium by regulating Akt/Nrf2 signal pathway. Drug Design, Development and Therapy, 13, 647-655. DOI : 10.2147/DDDT.S191537
  28. X. L. Cui et al. (2019). Extract of Cycas revoluta Thunb. enhances the inhibitory effect of 5- fl uorouracil on gastric cancer cells through the AKT-mTOR pathway. World Journal of Gastroenterology, 25(15), 1854-1864. DOI : 10.3748/wjg.v25.i15.1854
  29. A. S. Gary &P. J. Rochette. (2020). Apoptosis. the only cell death pathway that can be measured in human diploid dermal fibroblasts following lethal UVB irradiation. Scientific Reports, 10(1), 18946. DOI : 10.1038/s41598-020-75873-1
  30. Godar. DE. Miller. SA & Thomas. DP. (1994). Immediate and delayed apoptotic cell death mechanisms: UVA versus UVB and UVC radiation. Cell Death and Differentiation, 1(1), 59-66. DOI :
  31. Yoshizumi. M. Nakamura. T. Kato. M. Ishioka. T. Kozawa. K. Wakamatsu. K & Kimura. H. (2008). Release of cytokines/chemokines and cell death in UVB-irradiated human keratinocytes, HaCaT. Cell Biology International, 32(11), 1405-1411. DOI : 10.1016/j.cellbi.2008.08.011
  32. D. Hao et al. (2019). Sanshool improves UVB-induced skin photodamage by targeting JAK2/STAT3-dependent autophagy. Cell Death and Disease, 10(1), 1-13. DOI : 10.1038/s41419-018-1261-y
  33. J. K. Kim et al. (2012). 5,7-Dimethoxyflavone, an activator of PPARalpha/gamma, inhibits UVB-induced MMP expression in human skin fibroblast cells. Experimental Dermatology, 21(3), 211-216. DOI : 10.1111/j.1600-0625.2011.01435.x
  34. J. Kang et al. (2008). Extracellular matrix secreted by senescent fibroblasts induced by UVB promotes cell proliferation in HaCaT cells through PI3K/AKT and ERK signaling pathways. International Journal of Molecular Medicine, 21(6), 777-784.
  35. M. Ming et al. (2010). UVB-induced ERK/AKT-dependent PTEN suppression promotes survival of epidermal keratinocytes. Oncogene, 29(4), 492-502. DOI : 10.1038/onc.2009.357
  36. H. Zheng, M. Zhang, H. Luo & H. Li. (2019). Isoorientin alleviates UVB-induced skin injury by regulating mitochondrial ROS and cellular autophagy. Biochemical and Biophysical Research Communications, 514(4), 1133-1139. DOI : 10.1016/j.bbrc.2019.04.195
  37. Z. Quan et al. (2020). PLCɛ maintains the functionality of AR signaling in prostate cancer via an autophagy-dependent mechanism. Cell Death and Disease, 11(8), 716. DOI : 10.1038/s41419-020-02921117-9
  38. M. Bhardwaj et al. (2018). Vitexin induces apoptosis by suppressing autophagy in multi-drug resistant colorectal cancer cells. Oncotarget, 9(3), 3278-3291. DOI : 10.18632/oncotarget.22890
  39. L. Zhang, Q. Feng, Z. Wang, P. Liu & S. Cui. (2019). Progesterone receptor antagonist provides palliative effects for uterine leiomyoma through a Bcl-2/Beclin1-dependent mechanism. Bioscience Reports, 39(7). DOI : 10.1042/BSR20190094