DOI QR코드

DOI QR Code

Fabrication of Thermoelectric Module and Analysis of its Power Generation Characteristics

열전발전소자 제작 및 발전특성 분석

  • Choi, Taeho (Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology) ;
  • Kim, Tae Young (Department of Mechanical and Automotive Engineering, Seoul National University of Science and Technology)
  • 최태호 (서울과학기술대학교 기계자동차공학과) ;
  • 김태영 (서울과학기술대학교 기계자동차공학과)
  • Received : 2020.12.28
  • Accepted : 2021.02.20
  • Published : 2021.02.28

Abstract

In this study, a Bi2Te3 thermoelectric generator (TEG) was fabricated to convert unused thermal energy into useful electrical energy. For the performance test, a dedicated experiment device consisting of a heating block operating with cartridge heaters and a cooling block through which a refrigerant flows was constructed. A 3×3 array of thermocouples was mounted on the heating block and the cooling block, respectively, to derive the temperature fields and heat transfer rate onto both sides of the TEG. Experiments were conducted for a total of 9 temperature differences, obtaining V-I and P-R curves. The results of 7 variables including Seebeck coefficients that have a major effect on performance were presented as a function of the temperature difference. The feasibility of the energy recovery performance of the developed TEG was verified from the maximum power output of 7.5W and conversion efficiency of 11.3%.

본 연구에서는 산업현장에서 미활용되는 열에너지를 회수하여 유용한 전기에너지로 변환하기 위한 Bi2Te3 계열 열전소자를 제작하고 에너지회수 성능 및 물성을 도출하였다. 성능시험을 위하여 카트리지 히터 가열 방식의 가열블록과 냉매가 흐르는 냉각블록으로 구성된 전용 실험장치를 구성하였으며, 가열블록과 냉각블록에는 3×3 배열의 열전대를 장착하여 소자 양 면 온도와 열전달율을 도출하였다. 최소 온도차 27K부터 최대 온도차 172.2K까지 총 9가지의 온도차에 대해 실험을 수행하여 V-I curve와 P-R curve를 도출하였고 성능에 주요한 영향을 미치는 제벡계수 등 변수 7가지에 대하여 온도차에 대한 함수로 결과를 제시하였다. 최대 발전양 7.5W와 변환효율 11.3%의 결과로부터 개발된 열전소자의 열에너지 회수 성능의 타당성을 검증하였다.

Keywords

References

  1. D. Kong, W. Zhu, Z. Guo & Y. Deng. (2019). High-performance flexible Bi2Te3 films based wearable thermoelectric generator for energy harvesting. Energy, 175, 292-299. DOI : 10.1016/j.energy.2019.03.060
  2. M. S. El-Genk & H. H. Saber. (2003). High efficiency segmented thermoelectric unicouple for operation bettwe 973 and 300 K, Energy Converse and Manage, 44, 1069-1088. DOI : S0196-8904(02)00109-7 https://doi.org/10.1016/S0196-8904(02)00109-7
  3. G. Tan, L.-D. Zhao & M. G. Kanatzidis. (2016), Rationally designing high-performance bulk thermoelectric materials, Chem Rev, 116, 12123-12149. DOI : 10.1021/acs.chemrev.6b00255
  4. H. Lee, A. Attar & S. Weera. (2015). Performance prediction of commercial thermoelectric cooler modules using the effective material properties. J Electron Mater, 44(6), 2157-2165. DOI : 10.1007/s11664-015-3723-7
  5. A.H. Elarus, H. Fagehi, H. Lee & A. Attar. (2017). Theoretical approach to predict the performance of thermoelectric generator modules. J Electron Mater, 47(2), 872-881. DOI : 10.1007/s11664-016-4948-9
  6. S. Lineykin & S. Ben-Yaakov (2007). Modeling and analysis of thermoelectric modules. IEEE Trans Ind Appl, 43(2), 505-512. DOI : 10.1109/TIA.2006.889813
  7. Z. Luo. (2008). A simple method to estimate the physical characteristics of a thermoelectric cooler from vendor datasheets. J Electr Cool Thermal Control, 1-14.
  8. R. Ahiska, S. Dislitas & G. Omer (2011). A new method and computer-controlled system for measuring the time constant of real thermoelectric modules. Energy Convers Manage, 53, 314-321. DOI : 10.1016/j.enconman.2011.09.003
  9. S. Weera, H. Lee & A. Attar. (2020). Utilizing effective material properties to validate the performance of thermoelectric cooler and generator modules. Energy Convers and Manage, 205, 112427. DOI : 10.1016/j.enconman.2019.112427
  10. D. Kim, C. Kim, J. Park & T.Y. Kim. (2019). Highly enhanced thermoelectric energy harvesting from a high-temperature heat source by boosting thermal interface conduction. Energy, 183, 360-368. DOI : 10.1016/j.enconman.2018.12.108
  11. T. Y. Kim, A. Negash & G. Cho. (2017). Experimental study of energy utilization effectiveness of thermoelectric generator on diesel engine. Energy, 128, 531-539. DOI : 10.1016/j.energy.2017.04.060
  12. S. Nag, A. Saini, R. Singh & R. Kumar. (2020). Ultralow lattice thermal conductivity and anisotropic thermoelectric performance of AA stacked SnSe bilayer. Applied Surface Science, 512, 145640. DOI : 10.1016/j.apsusc.2020.145640
  13. T. Y. Kim, S. Lee & J. Lee. (2016). Fabrication of thermoelectric modules and heat transfer analysis on internal plate fin structures of a thermoelectric generator, Energy Convers and Manage, 124, 470-479. DOI : 10.1016/j.enconman.2016.07.040