DOI QR코드

DOI QR Code

SPH-Based Wave Tank Simulations

SPH 기법 기반의 파동수조 시뮬레이션

  • Lee, Sangmin (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kim, Mujong (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology) ;
  • Ko, Kwonhwan (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology) ;
  • Hong, Jung-Wuk (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology)
  • 이상민 (한국과학기술원 건설 및 환경공학과) ;
  • 김무종 (한국과학기술원 건설 및 환경공학과) ;
  • 고권환 (한국과학기술원 건설 및 환경공학과) ;
  • 홍정욱 (한국과학기술원 건설 및 환경공학과)
  • Received : 2020.12.29
  • Accepted : 2021.02.03
  • Published : 2021.02.28

Abstract

Recently, large-scale offshore and coastal structures have been constructed owing to the increasing interest in eco-friendly energy development. To achieve this, precise simulations of waves are necessary to ensure the safe operations of marine structures. Several experiments are required in the field to understand the offshore wave; however, in terms of scale, it is difficult to control variables, and the cost is significant. In this study, numerical waves under various wave conditions are produced using a piston-type wavemaker, and the produced wave profiles are verified by comparing with the results from a numerical wave tank (NWT) modeled using the smoothed particle hydrodynamics (SPH) method and theoretical equations. To minimize the effect by the reflected wave, a mass-weighted damping zone is set at the right end of the NWT, and therefore, stable and uniform waves are simulated. The waves are generated using the linear and Stokes wave theories, and it is observed that the numerical wave profiles calculated by the Stokes wave theory yield high accuracy. When the relative depth is smaller than two, the results show good agreement irrespective of the wave steepness. However, when the relative depth and wave steepness are larger than 2 and 0.04, respectively, the errors are negligible if the measurement position is close to the excitation plate. However, the error is 10% or larger if the measurement position is away from the excitation location. Applicable target wave ranges are confirmed through various case studies.

최근 친환경 에너지 개발에 대한 관심의 증가로 해상 및 연안 지역에서 대규모 해양구조물들이 건설되고 있다. 해양구조물은 항상 파랑 하중에 노출되어 있으므로 구조적인 안전성을 확보하기 위해서는 파랑에 대한 정확한 이해와 분석이 필수적이다. 실해역에서 수행되는 실험은 해양파를 이해하기 위한 가장 정확한 방법이지만, 변수의 통제가 어렵고 비용과 규모 측면에서 실험이 제한되는 경우가 많다. 본 연구에서는 수치파동수조를 이용하여 다양한 조건의 파를 생성하고 및 이론식과 비교를 통해 파랑 생성 능력을 검증하였다. 입자 기반 수치해석법인 SPH(Smoothed Particle Hydrodynamics) 기법을 이용하여 3차원 수조 및 피스톤 조파기를 모델링하였으며, 반사파에 대한 영향을 최소화하기 위해 수로 끝단에 질량 가중 감쇠 영역을 설정하여 안정적인 파고 및 유속 계산이 수행될 수 있게 하였다. 목표 파랑 조건에서,상대 수심이 2 이하를 만족하는 경우 파형경사에 관계없이 파고와 유속을 계산한 결과가 이론값과 높은 정확도를 보였다. 그러나 상대수심과 파형경사의 목표값이 증가하고, 측정 위치가 멀어짐에 따라서 최대 10% 이상의 오차가 발생하였다. 수치해석을 이용하여 정확한 계산이 가능한 파랑 범위를 무차원 변수를 이용하여 제안하였으며, 차후 수치해석을 이용한 수치파동수조 검증기준과 유체-구조물 상호작용 해석분야 연구에 효과적으로 활용될 수 있다.

Keywords

References

  1. Altomare, C., Dominguez, J.M., Crespo, A.J.C., Gonzalez-Cao, J., Suzuki, T., Gomez-Gesteira, M., Troch, P. (2017) Long-Crested Wave Generation and Absorption for SPH-based DualSPHysics Model, Coast. Eng., 127, pp.37-54. https://doi.org/10.1016/j.coastaleng.2017.06.004
  2. Crespo, A.J.C., Gomez-Gesteira, M., Dalrymple, R.A. (2007) Boundary Conditions Generated by Dynamic Particles in SPH Methods, Comput. Mater. & Contin., 5(3), pp.173-184.
  3. Dalrymple, R.A., Rogers, B.D. (2006) Numerical Modeling of Water Waves with the SPH Method, Coast. Eng., 53(2-3), pp.141-147. https://doi.org/10.1016/j.coastaleng.2005.10.004
  4. Dean, R.G., Dalrymple, R.A. (1991) Water Wave Mechanics for ENgineers and Scientists, Advanced Series on Ocean Engineering, 2, World Scientific Publishing Company, Singapore, pp.170-186.
  5. Didier, E., Neves, M.G. (2012) A Semi-infinite Numerical Wave Flume Using Smoothed Particle Hydrodynamics, Int.J. Offshore & Polar Eng., 22(03), pp.193-199.
  6. Finnegan, W., Goggins, J. (2012) Numerical Simulation of Linear Water Waves and Wave-structure Interaction, Ocean Eng., 43, pp.23-31. https://doi.org/10.1016/j.oceaneng.2012.01.002
  7. Goda, Y. (1967) Travelling Secondary Wave Crests in Wave Channels, Port and Harbour Research Institute, Ministry of Transport, Japan, 13, pp.32-38.
  8. Gingold, R.A., Monaghan, J.J. (1977) Smoothed Particle Hydrodynamics: Theory and Application to Non-spherical Stars, Mon. Not. R. Astron. Soc., 181(3), pp.375-389. https://doi.org/10.1093/mnras/181.3.375
  9. Havelock, T.H. (1929) LIX. Forced Surface-Waves on Water, The Lond. Edinb. & Dublin Philos. Mag. & J. Sci., 8(51), pp.569-576. https://doi.org/10.1080/14786441008564913
  10. Hallquist, J.O. (2006) LS-DYNA Theory Manual.
  11. Hallquist, J.O. (2007) Ls-dyna Keyword User's Manual. Livermore Software Technology Corporation.
  12. Kim, T.Y., Jang, S.J., Kim, C.K. (2017) Application of InVEST Offshore Wind Model for Evaluation of Offshore Wind Energy Resources in Jeju Island, J. Korean Assoc. Geogr. Inf. Stud., 20(2), pp.47-59. https://doi.org/10.11108/kagis.2017.20.2.047
  13. Krvavica, N., Ruzic, I., Ozanic, N. (2018) New Approach to Flap-type Wavemaker Equation with Wave Breaking Limit, Coast. Eng., 60(1), pp.69-78. https://doi.org/10.1080/21664250.2018.1436242
  14. Le Mehaute, B. (2013) An Introduction to Hydrodynamics and Water Waves, Springer Science and Business Media, Berlin, Heidelberg, p.205.
  15. Lee, S., Hong, J.W. (2020a) Parametric Studies on Smoothed Particle Hydrodynamic Simulations for Accurate Estimation of Open Surface Flow Force, Int. J. Naval Arch. & Ocean Eng., 12, pp.85-101. https://doi.org/10.1016/j.ijnaoe.2019.07.003
  16. Lee, S., Hong, J.W. (2020b) A Semi-Infinite Numerical Wave Tank Using Discrete Particle Simulations, J. Mar. Sci. & Eng., 8(3), pp.159-162. https://doi.org/10.3390/jmse8030159
  17. Lee, S., Ko, K., Hong, J.W. (2020a) Comparative Study on the Breaking Waves by a Piston-type Wavemaker in Experiments and SPH Simulations, Coast. Eng., 62(2), pp.267-284. https://doi.org/10.1080/21664250.2020.1747141
  18. Lee, K., Ha, Y.J., Kim, K.H., Hong, S.Y. (2020b) Evaluation of Structural Response of Cylinderical Structures Based on 2D Wave-Tank Test Due to Wave Impact, J. Comput. Struct. Eng. Inst. Korea, 33(5), pp.287-296. https://doi.org/10.7734/COSEIK.2020.33.5.287
  19. Lucy, L.B. (1977) A Numerical Approach to the Testing of the Fission Hypothesis, The Astron. J., 82(12), pp.1013-1024. https://doi.org/10.1086/112164
  20. Madsen, O.S. (1971) On the Generation of Long Waves, J. Geophys. Res., 76(36), pp.8672-8683. https://doi.org/10.1029/JC076i036p08672
  21. Monaghan, J.J. (1994) Simulating Free Surface Flows with SPH, J. Comput. Phys., 110(2), pp.399-406. https://doi.org/10.1006/jcph.1994.1034
  22. Morison, J.R., Johnson, J.W., Schaaf, S.A. (1950) The Force Exerted by Surface Waves on Piles, J. Pet. Technol., 2(05), pp.149-154. https://doi.org/10.2118/950149-G
  23. Prasad, D.D., Ahmed, M.R., Lee, Y.H., Sharma, R.N. (2017) Validation of a Piston Type Wave-maker Using Numerical Wave Tank, Ocean Eng., 131, pp.57-67. https://doi.org/10.1016/j.oceaneng.2016.12.031
  24. Schaffer, H.A. (1996) Second-order Wavemaker Theory for Irregular Waves, Ocean Eng., 23(1), pp.47-88. https://doi.org/10.1016/0029-8018(95)00013-B
  25. Ursell, F., Dean, R.G., Yu, Y.S. (1960) Forced Small-amplitude Water Waves: a Comparison of Theory and Experiment, J. Fluid Mech., 7(1), pp.33-52. https://doi.org/10.1017/S0022112060000037
  26. Wienke, J., Oumeraci, H. (2005) Breaking Wave Impact Force on a Vertical and Inclined Slender Pile-theoretical and Large-scale Model Investigations, Coast. Eng., 52(5), pp.435-462. https://doi.org/10.1016/j.coastaleng.2004.12.008