References
- H. S. Kim, Kim, D. S., Kim, H., & Yi, S. M. (2012). Relationship between mortality and fine particles during Asian dust, smog-Asian dust, and smog days in Korea. International journal of environmental health research, 22(6). 518-530. https://doi.org/10.1080/09603123.2012.667796
- Y. P. Kim. (2006). (Invited paper)Air Pollution in Seoul Caused by Aerosols KOSAE, 22(5), 535-553.
- Jeon, S., & Son, Y. S. (2018). Prediction of fine dust PM 10 using a deep neural network model. The Korean Journal of Applied Statistics, 31(2), 265-28 https://doi.org/10.5351/KJAS.2018.31.2.265
- Kim, H. S., Kim, D. S., Kim, H., & Yi, S. M. (2012). Relationship between mortality and fine particles during Asian dust, smog-Asian dust, and smog days in Korea. International journal of environmental health research, 22(6). 518-530. https://doi.org/10.1080/09603123.2012.667796
- Graves, A., & Schmidhuber, J. (2009). Offline handwriting recognition with multidimensional recurrent neural networks. In Advances in neural information processing systems, 545-552.
- LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324. https://doi.org/10.1109/5.726791
- Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A fast learning algorithm for deep belief nets. Neural computation, 18(7), 1527-1554. https://doi.org/10.1162/neco.2006.18.7.1527
- Montgomery, D. C., Peck, E. A., & Vining, G. G. (2012). Introduction to linear regression analysis (Vol. 821). Hoboken : John Wiley & Sons.
- T. Y. Kim. (2019). Python Deep Learning Keras with Blocks. Seoul : Digital books.
- Greff, K., Srivastava, R. K., Koutnik, J., Steunebrink, B. R., & Schmidhuber, J. (2016). LSTM: A search space odyssey. IEEE transactions on neural networks and learning systems, 28(10), 2222-2232. https://doi.org/10.1109/TNNLS.2016.2582924
- Christoffersen, P., & Jacobs, K. (2004). The importance of the loss function in option valuation. Journal of Financial Economics, 72(2), 291-318. https://doi.org/10.1016/j.jfineco.2003.02.001
- Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization.ar Xiv preprint arXiv, 1412.6980.
- S. A. Park, & H. J. Shin. (2017). Analysis of the Factors Influencing PM2.5 in Korea : Focusing on Seasonal Factors. Journal of Environmental Policy and Administration, 25(1), 227-248. https://doi.org/10.15301/jepa.2017.25.1.227
- Korea Meteological Office. (2019). Yellow dust observation. Korea Meteorological Agency, Weather Data Opening Portal. https://data.kma.go.kr/data/climate/selectDustRltmList.do?pgmNo=68
- young-0. Beijing Air Quality: pm2.5. monthly comparison. http://www.young-0.com/airquality/
- D. Y. Wi. (2017.11.2.) Fine dust prediction accuracy, actually only 50%. Electimes, No. 3345, p. 12.