Acknowledgement
This research was carried out with the support of "Cooperative Research Program for Agricultural Science & Technology Development (Project No. PJ01424401)", Rural Development Administration, South Korea.
References
- Anderson, M. J. 2001. A new method for non-parametric multivariate analysis of variance. Aust. Ecol. 26:32-46. https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x
- Antoun, H., Beauchamp, C. J., Goussard, N., Chabot, R. and Lalande, R. 1998. Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on nonlegumes: effect on radishes (Raphanus sativus L.). Plant Soil 204:57-67. https://doi.org/10.1023/A:1004326910584
- Backer, R., Rokem, J. S., Ilangumaran, G., Lamont, J., Praslickova, D., Ricci, E., Subramanian, S. and Smith, D. L. 2018. Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front. Plant Sci. 9:1473. https://doi.org/10.3389/fpls.2018.01473
- Bulgarelli, D., Schlaeppi, K., Spaepen, S., Ver Loren van Themaat, E. and Schulze-Lefert, P. 2013. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 64:807-838. https://doi.org/10.1146/annurev-arplant-050312-120106
- Carvalhais, L. C., Dennis, P. G., Badri, D. V., Tyson, G. W., Vivanco, J. M. and Schenk, P. M. 2013. Activation of the jasmonic acid plant defence pathway alters the composition of rhizosphere bacterial communities. PLoS ONE 8:e56457. https://doi.org/10.1371/journal.pone.0056457
- Casamayor, E. O., Massana, R., Benlloch, S., Ovreas, L., Diez, B., Goddard, V. J., Gasol, J. M., Joint, I., Rodriguez-Valera, F. and Pedros-Alio, C. 2002. Changes in archaeal, bacterial and eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting methods in a multipond solar saltern. Environ. Microbiol. 4:338-348. https://doi.org/10.1046/j.1462-2920.2002.00297.x
- Chaparro, J. M., Badri, D. V. and Vivanco, J. M. 2014. Rhizosphere microbiome assemblage is affected by plant development. ISME J. 8:790-803. https://doi.org/10.1038/ismej.2013.196
- Clarke, K. R. 1993. Nonparametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18:117-143. https://doi.org/10.1111/j.1442-9993.1993.tb00438.x
- Cole, J. R., Wang, Q., Fish, J. A., Chai, B., McGarrell, D. M., Sun, Y., Brown, C. T., Porras-Alfaro, A., Kuske, C. R. and Tiedje, J. M. 2014. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42:D633-D642. https://doi.org/10.1093/nar/gkt1244
- Compant, S., Samad, A., Faist, H. and Sessitsch, A. 2019. A review on the plant microbiome: ecology, functions, and emerging trends in microbial application. J. Adv. Res. 19:29-37. https://doi.org/10.1016/j.jare.2019.03.004
- De Caceres, M. and Legendre, P. 2009. Associations between species and groups of sites: indices and statistical inference. Ecology 90:3566-3574. https://doi.org/10.1890/08-1823.1
- Deng, Y., Jiang, Y.-H., Yang, Y., He, Z., Luo, F. and Zhou, J. 2012. Molecular ecological network analyses. BMC Bioinform. 13:113. https://doi.org/10.1186/1471-2105-13-113
- Edgar, R. C. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10:996-998. https://doi.org/10.1038/nmeth.2604
- Edwards, J., Johnson, C., Santos-Medellin, C., Lurie, E., Podishetty, N. K., Bhatnagar, S., Eisen, J. A. and Sundaresan, V. 2015. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc. Natl. Acad. Sci. U. S. A. 112:E911-E920.
- Edwards, J. A., Santos-Medellin, C. M., Liechty, Z. S., Nguyen, B., Lurie, E., Eason, S., Phillips, G. and Sundaresan, V. 2018. Compositional shifts in root-associated bacterial and archaeal microbiota track the plant life cycle in field-grown rice. PLoS Biol. 16:e2003862. https://doi.org/10.1371/journal.pbio.2003862
- Gadhave, K. R., Devlin, P. F., Ebertz, A., Ross, A. and Gange, A. C. 2018. Soil inoculation with Bacillus spp. modifies root endophytic bacterial diversity, evenness, and community composition in a context-specific manner. Microb. Ecol. 76:741-750. https://doi.org/10.1007/s00248-018-1160-x
- Garbeva, P., van Veen, J. A. and van Elsas, J. D. 2004. Microbial diversity in soil: selection microbial populations by plant and soil type and implications for disease suppressiveness. Annu. Rev. Phytopathol. 42:243-270. https://doi.org/10.1146/annurev.phyto.42.012604.135455
- Glick, B. R. 2012. Plant growth-promoting bacteria: mechanisms and applications. Scientifica (Cairo) 2012:963401. https://doi.org/10.6064/2012/963401
- Jamil, A., Riaz, S., Ashraf, M. and Foolad, M. R. 2011. Gene expression profiling of plants under salt stress. Crit. Rev. Plant Sci. 30:435-458. https://doi.org/10.1080/07352689.2011.605739
- Kim, J. M., Roh, A.-S., Choi, S.-C., Kim, E.-J., Choi, M.-T., Ahn, B.-K., Kim, S.-K., Lee, Y.-H., Joa, J.-H., Kang, S.-S., Lee, S. A., Ahn, J.-H., Song, J. and Weon, H.-Y. 2016. Soil pH and electrical conductivity are key edaphic factors shaping bacterial communities of greenhouse soils in Korea. J. Microbiol. 54:838-845. https://doi.org/10.1007/s12275-016-6526-5
- Lebeis, S. L., Paredes, S. H., Lundberg, D. S., Breakfield, N., Gehring, J., McDonald, M., Malfatti, S., Glavina del Rio, T., Jones, C. D., Tringe, S. G. and Dangl, J. L. 2015. PLANT MICROBIOME: salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science 349:860-864. https://doi.org/10.1126/science.aaa8764
- Lee, S. A., Kim, Y., Kim, J. M., Chu, B., Joa, J.-H., Sang, M. K., Song, J. and Weon, H.-Y. 2019. A preliminary examination of bacterial, archaeal, and fungal communities inhabiting different rhizocompartments of tomato plants under real-world environments. Sci. Rep. 9:9300. https://doi.org/10.1038/s41598-019-45660-8
- Legendre, P. and Gallagher, E. D. 2001. Ecologically meaningful transformations for ordination of species data. Oecologia 129:271-280. https://doi.org/10.1007/s004420100716
- Liu, H., Carvalhais, L. C., Schenk, P. M. and Dennis, P. G. 2017. Effects of jasmonic acid signalling on the wheat microbiome differ between body sites. Sci. Rep. 7:41766. https://doi.org/10.1038/srep41766
- Liu, H., Xiong, W., Zhang, R., Hang, X., Wang, D., Li, R. and Shen, Q. 2018. Continuous application of different organic additives can suppress tomato disease by inducing the healthy rhizospheric microbiota through alterations to the bulk soil microflora. Plant Soil 423:229-240. https://doi.org/10.1007/s11104-017-3504-6
- Masciarelli, O., Llanes, A. and Luna, V. 2014. A new PGPR co-inoculated with Bradyrhizobium japonicum enhances soybean nodulation. Microbiol. Res. 169:609-615. https://doi.org/10.1016/j.micres.2013.10.001
- Min, W., Guo, H., Zhang, W., Zhou, G., Ma, L., Ye, J., Liang, Y. and Hou, Z. 2016. Response of soil microbial community and diversity to increasing water salinity and nitrogen fertilization rate in an arid soil. Acta Agric. Scand. Sect. B Soil Plant Sci. 66:117-126. https://doi.org/10.1080/09064710.2015.1078838
- Mueller, L. A., Kugler, K. G., Dander, A., Graber, A. and Dehmer, M. 2011. QuACN: an R package for analyzing complex biological networks quantitatively. Bioinformatics 27:140-141. https://doi.org/10.1093/bioinformatics/btq606
- Munns, R. 2005. Genes and salt tolerance: bringing them together. New Phytol. 167:645-663. https://doi.org/10.1111/j.1469-8137.2005.01487.x
- Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O'Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H. and Wagner, H. 2013. Vegan: community ecology package. R package version 2.0-10. R Foundation for Statistical Computing, Vienna, Austria.
- Olesen, J. M., Bascompte, J., Dupont, Y. L. and Jordano, P. 2007. The modularity of pollination networks. Proc. Natl. Acad. Sci. U. S. A. 104:19891-19896. https://doi.org/10.1073/pnas.0706375104
- Panke-Buisse, K., Poole, A. C., Goodrich, J. K., Ley, R. E. and Kao-Kniffin, J. 2015. Selection on soil microbiomes reveals reproducible impacts on plant function. ISME J. 9:980-989. https://doi.org/10.1038/ismej.2014.196
- Polonenko, D. R., Mayfield, C. I. and Dumbroff, E. B. 1986. Microbial responses to salt-induced osmotic stress. Plant Soil 92:417-425. https://doi.org/10.1007/BF02372489
- R Development Core Team. 2014. R: a language and environment for statistical computing. URL http://www.R-project.org/ [21 October 2021].
- Sawant, S. S., Kim, S. Y., Sang, M. K., Weon, H.-Y., Kim, S. and Song, J. 2019. Complete genome sequence of Bacillus mesonae H20-5, an efficient strain enhancing abiotic stress tolerance in plants. Korean J. Microbiol. 55:408-410.
- Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., Lesniewski, R. A., Oakley, B. B., Parks, D. H., Robinson, C. J., Sahl, J. W., Stres, B., Thallinger, G. G., Van Horn, D. J. and Weber, C. F. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75:7537-7541. https://doi.org/10.1128/AEM.01541-09
- Shi, S., Nuccio, E. E., Shi, Z. J., He, Z., Zhou, J. and Firestone, M. K. 2016. The interconnected rhizosphere: high network complexity dominates rhizosphere assemblages. Ecol. Lett. 19:926-936. https://doi.org/10.1111/ele.12630
- Shrivastava, P. and Kumar, R. 2015. Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. 22:123-131. https://doi.org/10.1016/j.sjbs.2014.12.001
- Tao, C., Li, R., Xiong, W., Shen, Z., Liu, S., Wang, B., Ruan, Y., Geisen, S., Shen, Q. and Kowalchuk, G. A. 2020. Bio-organic fertilizers stimulate indigenous soil Pseudomonas populations to enhance plant disease suppression. Microbiome 8:137. https://doi.org/10.1186/s40168-020-00892-z
- Toju, H., Peay, K. G., Yamamichi, M., Narisawa, K., Hiruma, K., Naito, K., Fukuda, S., Ushio, M., Nakaoka, S., Onoda, Y., Yoshida, K., Schlaeppi, K., Bai, Y., Sugiura, R., Ichihashi, Y., Minamisawa, K. and Kiers, E. T. 2018. Core microbiomes for sustainable agroecosystems. Nat. Plants 4:247-257. https://doi.org/10.1038/s41477-018-0139-4
- Trabelsi, D. and Mhamdi, R. 2013. Microbial inoculants and their impact on soil microbial communities: a review. Biomed. Res. Int. 2013:863240.
- Wang, L., Lu, X., Yuan, H., Wang, B. and Shen, Q. 2015. Application of bio-organic fertilizer to control tomato fusarium wilting by manipulating soil microbial communities and development. Commun. Soil Sci. Plant Anal. 46:2311-2322. https://doi.org/10.1080/00103624.2015.1081694
- Wang, Q., Garrity, G. M., Tiedje, J. M. and Cole, J. R. 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73:5261-5267. https://doi.org/10.1128/AEM.00062-07
- Wei, Z., Gu, Y., Friman, V.-P., Kowalchuk, G. A., Xu, Y., Shen, Q. and Jousset, A. 2019. Initial soil microbiome composition and functioning predetermine future plant health. Sci. Adv. 5:eaaw0759. https://doi.org/10.1126/sciadv.aaw0759
- Xue, C., Penton, C. R., Shen, Z., Zhang, R., Huang, Q., Li, R., Ruan, Y. and Shen, Q. 2015. Manipulating the banana rhizosphere microbiome for biological control of Panama disease. Sci. Rep. 5:11124. https://doi.org/10.1038/srep11124
- Yang, H., Hu, J., Long, X., Liu, Z. and Rengel, Z. 2016. Salinity altered root distribution and increased diversity of bacterial communities in the rhizosphere soil of Jerusalem artichoke. Sci. Rep. 6:20687. https://doi.org/10.1038/srep20687
- Yang, J., Kloepper, J. W. and Ryu, C.-M. 2009. Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci. 14:1-4. https://doi.org/10.1016/j.tplants.2008.10.004
- Yoo, S.-J., Kim, J. W., Kim, S. T., Weon, H.-Y., Song, J. and Sang, M. K. 2019a. Effect of Bacillus mesonae H20-5 on fruit yields and quality in protected cultivation. Res. Plant Dis. 25:84-88. https://doi.org/10.5423/RPD.2019.25.2.84
- Yoo, S.-J., Weon, H.-Y., Song, J. and Sang, M. K. 2019b. Induced tolerance to salinity stress by halotolerant bacteria Bacillus aryabhattai H19-1 and B. mesonae H20-5 in tomato plants. J. Microbiol. Biotechnol. 29:1124-1136. https://doi.org/10.4014/jmb.1904.04026
- Zhang, L.-N., Wang, D.-C., Hu, Q., Dai, X.-Q., Xie, Y.-S., Li, Q., Liu, H.-M. and Guo, J.-H. 2019a. Consortium of plant growth-promoting rhizobacteria strains suppresses sweet pepper disease by altering the rhizosphere microbiota. Front. Microbiol. 10:1668. https://doi.org/10.3389/fmicb.2019.01668
- Zhang, Y., Gao, X., Shen, Z., Zhu, C., Jiao, Z., Li, R. and Shen, Q. 2019b. Pre-colonization of PGPR triggers rhizosphere microbiota succession associated with crop yield enhancement. Plant Soil 439:553-567. https://doi.org/10.1007/s11104-019-04055-4
- Zolla, G., Badri, D. V., Bakker, M. G., Manter, D. K. and Vivanco, J. M. 2013. Soil microbiomes vary in their ability to confer drought tolerance to Arabidopsis. Appl. Soil Ecol. 68:1-9. https://doi.org/10.1016/j.apsoil.2013.03.007