DOI QR코드

DOI QR Code

Ink-jet Printing for the Fabrication of a Flexible Electrochromic Device Based on the Water-Soluble Viologen-Functionalized Dendrimer

  • Yekefallah, Vahideh (Department of Printing Science and Technology, Institute for Color Science and Technology) ;
  • Soleimani-Gorgani, Atasheh (Department of Printing Science and Technology, Institute for Color Science and Technology) ;
  • Rouhani, Shohre (Department of Organic Colorants, Institute for Color Science and Technology) ;
  • Najafi, Farhood (Department of Resin and Additives, Institute for Color Science and Technology)
  • Received : 2020.03.25
  • Accepted : 2020.09.22
  • Published : 2021.02.28

Abstract

This paper reports the preparation of an ink-jet printed flexible electrochromic device based on a water-soluble viologen-functionalized dendrimer. Polyamidoamine (PAMAM) dendrimers were modified with different concentrations of 1-1 bis(propylamine)-4,4'-bipyridylium dibromides to obtain solution-processable electrochromic materials (K1/2 and K1). FTIR, NMR, and elemental analyses are used to characterize synthesized viologens. Moreover, their electrochemical properties were investigated using cyclic voltammetry in an electrolyte solution consisting of 0.1 M HCl to find the optimum viologens. The low-cost ink-jet printer was used to print the prepared water-soluble electrochromic inks onto the ITO coated PET substrate to form desired transparent patterns. The electrolyte was applied on the printed electrochromic ink to make a sandwich with another ITO coated PET to prepare the electrochromic devices (ECD). By applying an electrical potential (0 to -2 V), the transparent ECD's color changed from colorless to blue. The color changes for the optimum ECD (K1), which had more viologen units on the dendrimer, was accompanied by an optical contrast of 47% and 311.5 ㎠C-1 coloration efficiency at 600 nm.

Keywords

References

  1. G.C. Granqvist, Handbook of inorganic electrochromic materials. 1995.
  2. P.M.S. Monk, R.J. Mortimer, D.R. Rosseinsky, Electrochromism: fundamentals and applications. 1995.
  3. R. J. Mortimer, A.L. Dyer, J.R. Reynolds, Displays, 2006, 27(1), 2-18. https://doi.org/10.1016/j.displa.2005.03.003
  4. C. Bird, A. Kuhn, Chem. Soc. Rev., 1981, 10(1), 49-82. https://doi.org/10.1039/CS9811000049
  5. J. Ding, C. Zheng, L. Wang, C. Lu, B. Zhang, Y. Chen, X. Zhuang, J. Mater. Chem. A., 2019, 7(41), 23337-23360. https://doi.org/10.1039/C9TA01724K
  6. K.W. Shah, S.X. Wang, D.X.Y. Soo, J. Xu, Polymers, 2019, 11(11),1839. https://doi.org/10.3390/polym11111839
  7. R. Papadakis, Molecules, 2019, 25(1), 1. https://doi.org/10.3390/molecules25010001
  8. X. Sun, J. Wang, Nano Lett, 2008, 8(7), 1884-1889. https://doi.org/10.1021/nl0804856
  9. S.Y. Choi, M. Mamak, N. Coombs, N. Chopra, A.O. Geoffrey, Nano Lett, 2004, 4(7), 1231-1235. https://doi.org/10.1021/nl049484d
  10. L. Cen, K. Neoh, E.T. Kang, Adv. Mater, 2005, 17(13), 1656-1661. https://doi.org/10.1002/adma.200500100
  11. D. Corr, U. Bach, D. Fay, M.Kinsella, C. McAtamney, F. O'Reilly, S.N. Rao, N. Stobie, Solid State Ion., 2003, 165(1), 315-321. https://doi.org/10.1016/j.ssi.2003.08.054
  12. J. Liu, Dyes Pigm, 2018, 154, 92-99. https://doi.org/10.1016/j.dyepig.2018.02.040
  13. Y. Rong, S. Kim, F. Su, D. Myers, M. Taya, Electrochim. Acta., 2011, 56(17), 6230-6236. https://doi.org/10.1016/j.electacta.2011.02.110
  14. J.T. Sampanthar, K.G. Neoh, S.W. Ng, E.T. Kang, K.L. Tan, Adv. Mater., 2000, 12(20), 1536-1539. https://doi.org/10.1002/1521-4095(200010)12:20<1536::AID-ADMA1536>3.0.CO;2-9
  15. J.H. Ryu, M.S. Park, K.D. Suh, Colloid Polym. Sci., 2007, 285(15),1675-1681. https://doi.org/10.1007/s00396-007-1741-6
  16. T. Sakano, F. Ito, T. Ono, O. Hirata, M. Ozawa, T. Nagamura, Thin Solid Films, 2010, 519(4), 1458-1463. https://doi.org/10.1016/j.tsf.2010.09.015
  17. T.M. Benedetti, T. Carvalho, D.C. Iwakura, F. Braga, B.R. Vieira, P. Vidinha, J. Gruber, R.M. Torresi, Sol. Energy Mater. Sol. Cells., 2015, 132, 101-106. https://doi.org/10.1016/j.solmat.2014.08.037
  18. P.M. Monk, C. Turner, S.P. Akhtar, Electrochim. Acta., 1999, 44(26), 4817-4826. https://doi.org/10.1016/S0013-4686(99)00225-X
  19. R.J. Mortimer, T.S. Varley, Chem. Mater., 2011, 23(17), 4077-4082. https://doi.org/10.1021/cm201951n
  20. H.J. Byker, U.S. Pat. No. 5,336,448. 1994.
  21. Z. Qian, X. Huang, Q. Wang, Dyes Pigm, 2017, 145, 365-370. https://doi.org/10.1016/j.dyepig.2017.02.042
  22. J. Liu, Dyes Pigm, 2019, 163, 496-501. https://doi.org/10.1016/j.dyepig.2018.12.033
  23. S.G. Bertolotti, J.J. Cosa, H.E. Gsponer, M. Hamity, C. M. Previtali, Can. J. Chem., 1986, 64(5), 845-848. https://doi.org/10.1139/v86-139
  24. S. Nachimuthu, W.R. Shie, D.J. Liaw, R.V. Romashko, J.C. Jiang, J. Phys. Chem. B., 2019, 123(22), 4735-4744. https://doi.org/10.1021/acs.jpcb.9b00393
  25. L.C. Cao, M. Mou, Y. Wang, J. Mater. Chem., 2009, 19(21), 3412-3418. https://doi.org/10.1039/b818523a
  26. K. Takada, D.J. Diaz, H. D. Abruna, I. Cuadrado, C. Casado, B. Alonso, M. Moran, J.Losada, J. Am. Chem. Soc., 1997, 119(44), 10763-10773. https://doi.org/10.1021/ja9716315
  27. W.S. Baker, B.I. Lemon, R.M. Crooks, J. Phys. Chem. B., 2001, 105(37), 8885-8894. https://doi.org/10.1021/jp012473d
  28. S. Araki, K. Nakamura, K. Kobayashi, A. Tsuboi, N. Kobayashi, Adv. Mater,. 2012, 24(23), OP122-OP126.
  29. P. Monk, The Viologens: Synthesis, Physicochemical Properties and Applications of the Salts of 4, 4'-Bipyridine. 1998.
  30. A. Factor, G. Heinsohn, J Polym Sci B: Polym Lett, 1971, 9(4), 289-295. https://doi.org/10.1002/pol.1971.110090408
  31. M. Li, Y. Wei, J. Zheng, D. Zhu, C. Xu, Org. Electron., 2014, 15(2), 428-434. https://doi.org/10.1016/j.orgel.2013.11.018
  32. S.H. Kim, N. Shim, H. Lee, B. Moon, J. Mater. Chem., 2012, 22(27), 13558-13563. https://doi.org/10.1039/c2jm31407j
  33. R. Sydam, M. Deepa, A.G. Joshi, Org. Electron, 2013, 14(4), 1027-1036. https://doi.org/10.1016/j.orgel.2013.01.035
  34. P.R. Somani, S. Radhakrishnan, Mater. Chem. Phys., 2003, 77(1), 117-133. https://doi.org/10.1016/S0254-0584(01)00575-2
  35. H.V. Dam, J. Ponjee, J . Electrochem. Soc., 1974, 121(12),1555-1558. https://doi.org/10.1149/1.2401732
  36. P. Bhattacharya, A Novel Series of Viologen-Containing Dendrimers. 2008.
  37. C.J. Hawker, F. Chu, P.J. Pomery, D.J.T. Hill, Macromolecules,. 1996, 29(11), 3831-3838. https://doi.org/10.1021/ma951909i
  38. M. Aleksandrova, J. Phys.: Conf. Ser., 2014, 559(1), 012003. https://doi.org/10.1088/1742-6596/559/1/012003
  39. K. Kaneda, S. Suzuki, Jpn. J. Appl. Phys., 1991, 30(8R), 1841. https://doi.org/10.1143/JJAP.30.1841
  40. K.X. Steirer, M.O. Reese, B.L. Rupert, N. Kopidakis, D.C. Olson, R.T. Collins, D.S. Ginley, Sol. Energy Mater. Sol. Cells., 2009, 93(4), 47-453.
  41. S.M. Wang, L. Liu, W.L. Chen, Z.M. Zhang, Z.M. Sua, E.B. Wang, J. Mater. Chem A., 2013, 1(2), 216-220. https://doi.org/10.1039/C2TA00486K
  42. T. Maruyama, S. Arai, Sol. Energy Mater. Sol. Cells., 1993, 30(3), 257-262. https://doi.org/10.1016/0927-0248(93)90145-S
  43. G. Cai, J. Wang, P.S. Lee, Acc. Chem. Res., 2016. 49(8),1469-1476. https://doi.org/10.1021/acs.accounts.6b00183
  44. F.C. Krebs, Sol. Energy Mater. Sol. Cells., 2009, 93(4), 394-412. https://doi.org/10.1016/j.solmat.2008.10.004
  45. R. Esfand, D. Tomalia, Laboratory synthesis of poly (amidoamine)(PAMAM) dendrimers. Dendrimers and other dendritic polymers. 2001.
  46. E. Fortunato, Dual-phase inkjet printed electrochromic layers based on PTA and WOX/TiO2 nanoparticles for electrochromic applications. 2010.
  47. K. Wadhwa, S. Nuryyeva, A.C. Fahrenbach, M Elhabiri, C. Platas-Iglesias, A. Trabolsi, J. Mater. Chem C., 2013, 1(12), 2302-2307. https://doi.org/10.1039/c3tc00740e
  48. P. Bhattacharya, A.E. Kaifer, J. Org. Chem., 2008, 73(15), 5693-5698. https://doi.org/10.1021/jo800953v
  49. A.H. Holm, R. Moller K.H Vase, M. Dong, K.Norrman, F. Besenbacher, S.U. Pedersen, K. Daasbjerg, New J Chem., 2005, 29(5), 659-666. https://doi.org/10.1039/b415623d
  50. H.R. Kang, J. Imaging Sci., 1991, 35(3), 179-188.
  51. D. Li, A. Neumann, J. Colloid Interface Sci., 1990, 137(1), 304-307. https://doi.org/10.1016/0021-9797(90)90067-X
  52. H.F. George, F. Qureshi, Newton's Law of Viscosity, Newtonian and Non-Newtonian Fluids, in Encyclopedia of Tribology. 2013.
  53. H.J. Byker, U.S. Pat. No. 5,294, 376A. 1994.
  54. R.J. Mortimer, T.S. Varley, Sol. Energy Mater. Sol. Cells., 2012, 99, 213-220. https://doi.org/10.1016/j.solmat.2011.11.052
  55. S. Li, Y. Wang, J.G Wu, L. Guo, M. Ye, Y.H. Shao, R. Wang, C. Zhao, A. Wei, RSC Adv, 2016, 6(76), 72037-72043. https://doi.org/10.1039/C6RA13951E
  56. E. Hwang, S. Seo, S. Bak, H. Lee, M. Min, H. Lee, Adv. Mater., 2014, 26(30), 5129-5136. https://doi.org/10.1002/adma.201401201
  57. V. Jain, M. Khiterer, R. Montazami, H.M. Yochum, K.J. Shea, J.R. H, ACS Appl. Mater. Interfaces., 2009, 1(1), 83-89. https://doi.org/10.1021/am8000264
  58. C.W. Hu, K.M. Lee, K.C. Chen, L.C. Chang, K.Y. Shen, S.-C. Lai, T.-H. Kuo, C.-Y. Hsu, L.M. Huang, R. Vittal, K.C. Ho, Sol. Energy Mater. Sol. Cells., 2012, 99,35-140.
  59. G.Wang, X. Fu, J. Huang, C. Wu, L.Wu, Q. Du, Org. Electron, 2011, 12(7), 1216-1222. https://doi.org/10.1016/j.orgel.2011.03.040

Cited by

  1. Electrochemically induced deposition of hydroxyl‐terminated poly(amidoamine) dendrimers encapsulating Pt nanoparticles on indium tin oxide for enhanced electrochemiluminescence vol.42, pp.11, 2021, https://doi.org/10.1002/bkcs.12398