DOI QR코드

DOI QR Code

Electrocoagulation of Disperse Dyebath Wastewater: Optimization of Process Variables and Sludge Production

  • Aygun, Ahmet (Bursa Technical University, Faculty of Engineering and Natural Sciences, Department of Environmental Engineering) ;
  • Nas, Bilgehan (Konya Technical University, Faculty of Engineering and Natural Sciences, Department of Environmental Engineering) ;
  • Sevimli, Mehmet Faik (KTO Karatay University, Engineering Faculty, Department of Civil Engineering)
  • Received : 2020.02.13
  • Accepted : 2020.08.27
  • Published : 2021.02.28

Abstract

This study was conducted to investigate the effect of initial pH, current density, and electrolysis time on process performance in terms of decolorization and chemical oxygen demand (COD) removal from disperse dyebath wastewater (DDW) by mono-polar parallel laboratory scale electrocoagulation (EC) process. COD reduction of 51.3% and decolorization of 92.8% were obtained with operating cost of 0.19 €/㎥ treated wastewater for Al-Al electrode pair, while 90.5% of decolorization and 49.2% of COD reduction were obtained with operating cost of 0.20 €/㎥ treated wastewater for an Fe-Fe electrode pair. The amount of sludge production were highly related to type of the electrode materials. At the optimum conditions, the amount of sludge produced were 0.18 kg/㎥ and 0.28 kg/㎥ for Al-Al and Fe-Fe electrode pairs, respectively. High decolorization can be explained by the hydrophobic nature of the disperse dye, while limited COD removal was observed due to the high dissolved organic matter of the DDW based on auxiliary chemicals. Energy, electrode, and chemical consumptions and sludge handling were considered as major cost items to find a cost-effective and sustainable solution for EC. The contribution of each cost items on operating cost were determined as 10.0%, 51.1%, 30.5% and 8.4% for Al-Al, and they were also determined as 9.0%, 38.0%, 40.5% and 12.5% for Fe-Fe, respectively. COD reduction and decolorization were fitted to first-order kinetic rule.

Keywords

References

  1. K. Cirik, N. Dursun, E. Sahinkaya, O. Cinar, Bioresour. Technol., 2013, 133, 414-420. https://doi.org/10.1016/j.biortech.2013.01.064
  2. E. Tsantaki, T. Velegraki, A. Katsaounis, D. Mantzavinos, J. Hazard. Mater., 2012, 207-208, 91-96. https://doi.org/10.1016/j.jhazmat.2011.03.107
  3. S.T. Akar, A. Gorgulu, Z. Kaynak, B. Anilan, T. Akar, Chem. Eng. J., 2009, 148(1), 26-34. https://doi.org/10.1016/j.cej.2008.07.027
  4. M. Meinke, M. Abdollahnia, F. Gahr, T. Platzek, W. Sterry, J. Lademann, Exp. Dermatol., 2009, 18(9), 789-792. https://doi.org/10.1111/j.1600-0625.2009.00885.x
  5. V. Faraco, C. Pezzella, P. Giardina, A. Piscitelli, S. Vanhulle, G. Sannia, J. Chem. Technol. Biotechnol., 2009, 84(3), 414-419. https://doi.org/10.1002/jctb.2055
  6. T. Robinson, G. McMullan, R. Marchant, P. Nigam, Bioresour. Technol., 2001, 77(3), 247-255. https://doi.org/10.1016/S0960-8524(00)00080-8
  7. D. Yang, H. Li, Y. Qin, R. Zhong, M. Bai, X.Q. Qiu, J. Dispers. Sci. Technol., 2015, 36(4), 532-539. https://doi.org/10.1080/01932691.2014.916221
  8. A. Ujhelyiova, E. Bolhova, J. Oravkinova, R. Tino, A. Marcincin, Dye. Pigment., 2007, 72(2), 212-216. https://doi.org/10.1016/j.dyepig.2005.08.026
  9. S. Altun, Color. Technol., 2005, 121(2), 69-71. https://doi.org/10.1111/j.1478-4408.2005.tb00253.x
  10. J.J. Lee, W.J. Lee, J.P. Kim, Fibers Polym., 2003, 4(2), 66-70. https://doi.org/10.1007/BF02875439
  11. J. Akrman, J. Prikryl, J. Appl. Polym. Sci., 1997, 66(3), 543-550. https://doi.org/10.1002/(SICI)1097-4628(19971017)66:3<543::AID-APP15>3.0.CO;2-W
  12. S.M. Burkinshaw, G. Salihu, Dye. Pigment., 2013, 99(3), 548-560. https://doi.org/10.1016/j.dyepig.2013.06.006
  13. I.A. Alaton, G. Insel, G. Eremektar, F.G., Babuna, D. Orhon, Chemosphere, 2006, 62(9), 1549-1557. https://doi.org/10.1016/j.chemosphere.2005.06.010
  14. K. Sarayu, S. Sandhya, Appl. Biochem. Biotechnol., 2012, 167(3), 645-661. https://doi.org/10.1007/s12010-012-9716-6
  15. I. Arslan, J. Hazard. Mater., 2001, 85(3), 229-241. https://doi.org/10.1016/S0304-3894(01)00232-1
  16. M. Karatas, Y.A. Argun, M. E. Argun, J. Ind. Eng. Chem., 2012, 18(3), 1058-1062. https://doi.org/10.1016/j.jiec.2011.12.007
  17. I. Anastopoulos, A. Hosseini-Bandegharaei, J. Fu, A. C. Mitropoulos, G. Z. Kyzas, J. Dispers. Sci. Technol., 2018, 39(6), 836-847. https://doi.org/10.1080/01932691.2017.1398661
  18. S. Sahinkaya, J. Ind. Eng. Chem., 2013, 19(2), 601-605. https://doi.org/10.1016/j.jiec.2012.09.023
  19. T. H. Kim, C. Park, E. B. Shin, S. Kim, Desalination., 2002, 150(2), 165-175. https://doi.org/10.1016/S0011-9164(02)00941-4
  20. B. Merzouk, B. Gourich, K. Madani, C. Vial, A. Sekki, Desalination., 2011, 272(1-3), 246-253. https://doi.org/10.1016/j.desal.2011.01.029
  21. C. Phalakornkule, S. Polgumhang, W. Tongdaung, B. Karakat, T. Nuyut, J. Environ. Manage., 2010, 91(4), 918-926. https://doi.org/10.1016/j.jenvman.2009.11.008
  22. B.K. Nandi, S. Patel, J. Dispers. Sci. Technol., 2013, 34(12), 1713-1724. https://doi.org/10.1080/01932691.2013.767203
  23. F. Ilhan, K. Ulucan-Altuntas, C. Dogan, & U. Kurt, Global NEST J., 2019, 21(2), 187-194.
  24. S. Bener, O. Bulca, B. Palas, G. Tekin, S. Atalay, G. Ersoz, Process Saf. Environ. Prot., 2019, 129, 47-54. https://doi.org/10.1016/j.psep.2019.06.010
  25. M. Bayramoglu, M. Kobya, O.T. Can, M. Sozbir, Sep. Purif. Technol., 2004, 37(2), 117-125. https://doi.org/10.1016/j.seppur.2003.09.002
  26. A. Dimoglo, P. Sevim-Elibol, O. Dinc, K. Gokmen, H. Erdogan, J. Water Process. Eng., 2019, 31, 100877 https://doi.org/10.1016/j.jwpe.2019.100877
  27. D. Gunawan, V. B. Kuswadi, L. Sapei, L. Riadi, Environ. Eng. Res., 2018, 23(1), 114-119. https://doi.org/10.4491/eer.2017.108
  28. I. Arslan-Alaton, M. Kobya, A. Akyol, M. Bayramo lu, Color. Technol., 2009, 125(4), 234-241. https://doi.org/10.1111/j.1478-4408.2009.00202.x
  29. N. Daneshvar, A. Oladegaragoze, N. Djafarzadeh, J. Hazard. Mater., 2006, 129(1-3), 116-122. https://doi.org/10.1016/j.jhazmat.2005.08.033
  30. A. S. Naje, S. Chelliapan, Z. Zakaria, S.A. Abbas, J. Environ. Manage., 2016, 176, 34-44. https://doi.org/10.1016/j.jenvman.2016.03.034
  31. R. Keyikoglu, O. T. Can, A. Aygun, A. Tek, Colloids Interface Sci. Commun., 2019, 33, 100210 https://doi.org/10.1016/j.colcom.2019.100210
  32. M. M. Hossain, M. I. Mahmud, M. S. Parvez, H. M. Cho, Environ. Eng. Res., 2013, 18(3), 157-161. https://doi.org/10.4491/eer.2013.18.3.157
  33. A. Alinsafi, M. Khemis, M. N. Pons, J. P. Leclerc, A. Yaacoubi, A. Benhammou, A. Nejmeddine, Chem. Eng. Process. Process Intensif., 2005, 44(4), 461-470. https://doi.org/10.1016/j.cep.2004.06.010
  34. J. N. Hakizimana, B. Gourich, M. Chafi, Y. Stiriba, C. Vial, P. Drogui, J. Naja, Desalination., 2017, 404, 1-21. https://doi.org/10.1016/j.desal.2016.10.011
  35. A. S. Assemian, K. E. Kouassi, P. Drogui, K. Adouby, D. Boa, Water. Air. Soil Pollut., 2018, 229(6), 184 https://doi.org/10.1007/s11270-018-3813-2
  36. O. Gul, I. Atalar, F.T. Saricaoglu, F. Yazici, J. Food Process. Preserv., 2018, 42(5), e13615. https://doi.org/10.1111/jfpp.13615
  37. M.M. Nourouzi, T.G. Chuah, T.S.Y. Choong, Water Sci. Technol., 2011, 63(5), 984-995. https://doi.org/10.2166/wst.2011.280
  38. E. K. Tetteh, D. B. Naidoo, S. Rathilal, Eng. Res., 2019, 24, Issue 4.
  39. S. Sharma, A. Aygun, H. Simsek, Chemosphere, 2020, 249, 126511. https://doi.org/10.1016/j.chemosphere.2020.126511
  40. S. Sharma, H. Simsek, Chemosphere, 2019, 221, 630-639. https://doi.org/10.1016/j.chemosphere.2019.01.066
  41. W.T. Mook, M. K. Aroua, M. Szlachta, C. S. Lee, Water Sci. Technol., 2017, 75(4), 952-962. https://doi.org/10.2166/wst.2016.563
  42. A. Aygun, B. Nas, M.F. Sevimli, Korean J. Chem. Eng., 2019, 36(9), 1441-1449. https://doi.org/10.1007/s11814-019-0334-7
  43. Y. Yavuz, B. Ogutveren, J. Environ. Manage., 2018, 207, 151-158. https://doi.org/10.1016/j.jenvman.2017.11.034
  44. E. Demirbas, M. Kobya, Process Saf. Environ., 2017, 105, 79-90. https://doi.org/10.1016/j.psep.2016.10.013
  45. T. Olmez, J. Hazard. Mater. 2009, 162(2-3), 1371-1378. https://doi.org/10.1016/j.jhazmat.2008.06.017
  46. A. Aygun, S. Dogan, M. E. Argun, H. Ates, Environ. Eng. Res., 2019, 24(1), 24-30. https://doi.org/10.4491/eer.2017.179
  47. E. Gengec, M. Kobya, E. Demirbas, A. Akyol, K. Oktor, Water Sci. Technol., 2012, 65(12), 2183-2190. https://doi.org/10.2166/wst.2012.130
  48. W. Lemlikchi, S. Khaldi, M. O. Mecherri, H. Lounici, N. Drouiche, Sep. Sci. Technol., 2012, 47(11), 1682-1688. https://doi.org/10.1080/01496395.2011.647374
  49. I. Arslan-Alaton, G. Turkoglu, G. Environ. Eng. Sci., 2008, 25(3), 295-307. https://doi.org/10.1089/ees.2006.0243
  50. I. Kabdasli, B. Vardar, I. Arslan-Alaton, O. Tunay, Chem. Eng. J., 2009, 148(1), 89-96. https://doi.org/10.1016/j.cej.2008.08.006
  51. M. B. Hossain, N. P. Brunton, A. Patras, B. Tiwari, C.P. O'Donnell, A.B. Martin-Diana, C. Barry-Ryan, Ultrason. Sonochem., 2012, 19(3), 582-590. https://doi.org/10.1016/j.ultsonch.2011.11.001
  52. I. Linares-Hernandez, C. Barrera-Diaz, G. Roa-Morales, B. Bilyeu, F. Urena-Nunez, Chem. Eng. J., 2009, 148(1), 97-105. https://doi.org/10.1016/j.cej.2008.08.007
  53. R. Khosravi, S. Hazrati, M. Fazlzadeh, Desalin. Water Treat., 2016, 57(31), 14656-14664. https://doi.org/10.1080/19443994.2015.1063092
  54. B. K. Nandi, S. Patel, Arab. J. Chem., 2017, 10, S2961-S2968. https://doi.org/10.1016/j.arabjc.2013.11.032