DOI QR코드

DOI QR Code

A Study on Indoor Air-quality Improvement System Using Actuator

선형엑츄에이터를 이용한 실내 공기질 개선 시스템에 대한 연구

  • Received : 2021.01.28
  • Accepted : 2021.02.17
  • Published : 2021.02.28

Abstract

This study is a study on the implementation and operation of smart air cleaning system to improve indoor air quality. Recently, the problem of indoor air quality is getting serious due to various environmental factors. In this study, to improve the problems of indoor air quality, we implement an air cleaning system using IoT sensor. In particular, we proposed a system that can measure air pollution in real time and change different air flow paths according to pollution level. Through this, we examined efficient air quality improvement, extension of filter life, and system energy reduction. In addition, the main functions of the indoor air quality improvement system were constructed and prototypes were manufactured to confirm the operability. Finally, the utility of fine dust resolution through the implementation of the indoor air quality improvement system was examined.

본 논문은 실내 공기질 개선을 위한 스마트 공기청정 시스템 구현 및 구동에 관한 연구이다. 최근 다양한 환경적 요인으로 인해 실내 공기질 오염에 따른 문제가 심각해지고 있다. 본 연구에서는 이와 같은 실내 공기질 오염의 문제점을 개선하기 위해, IoT 센서를 활용한 스마트 공기청정 시스템을 구현하고자 한다. 특히 공기질 오염도를 실시간으로 측정하고, 오염도에 따라 서로 다른 공기 정화 경로를 가변시켜 줄 수 있는 시스템을 제안하였다. 이를 통해 효율적인 공기질 개선 및 필터의 수명 연장, 시스템 에너지 저감 등을 검토하였다. 또한 실내 공기질 개선 시스템에 대한 기능을 구현하기 위해 주요 부품을 선정하였고, 시제품을 제작하여 동작성을 확인하였다. 최종적으로 선형엑츄에이터를 활용한 실내 공기질 개선 시스템의 구현을 통해, 공기질 개선에 대한 효용성을 검토하였다.

Keywords

References

  1. C. Song, "Current status of fine dust and countermeasures", The Magazine of the Korean Society of Hazard Mitigation, vol. 66, no. 1, 2016, pp. 44-49.
  2. K. Yoon, S. Baek, "A Study on the Structural System and Implementation of Cantilever Actuator for Removal of Pollutants", J. of the Korea Institute of Electronic Communication Science, vol. 14, no. 4, 2019, pp. 651-656. https://doi.org/10.13067/JKIECS.2019.14.4.651
  3. S. Kim, "Regulations and effects of fine dust", Air cleaning technology, vol. 15, no. 1, 2002, pp. 19-28.
  4. T. Jo, T, Kim, "Patent technologies to reduce fine dust", J. of the Korea Institute for Structural Maintenance and Inspection, vol. 24, no. 2, 2020, pp. 9-14. https://doi.org/10.11112/JKSMI.2020.24.2.9
  5. Y. Jo, M. Jang, "Suggestion and Verification of Architecture for Collecting Fine Dust using Drone", J. of the Korea Institute of Electronic Communication Science, vol. 15, no. 1, 2020, pp. 125-132. https://doi.org/10.13067/JKIECS.2020.15.1.125
  6. T. Mizuno, M. Kawai, F. Tsuchiya, M. Kosugi, H. Yamada, "An examination for increasing the motor constant of a cylindrical moving magnet-type linear actuator," IEEE Trans. Magn., vol. 41, no. 10, 2005, pp. 3976-3978. https://doi.org/10.1109/TMAG.2005.855160
  7. K. Guo, S. Fang, H. Yang, H. Lin, and S.L. Ho, "A Novel Linear-Rotary Permanent Magnet Actuator Using Interlaced Poles," IEEE Trans. Magn., vol. 51, no. 11, 2015, pp. 376-383.
  8. K. Yoon, B. Kwon, "Optimal Design of a New Interior Permanent Magnet Model Using a Flared-Shape Arrangement of Ferrite Magnets" IEEE Trans. Magn., vol. 52, no. 7, 2016, p. 8106504.
  9. K. Yoon, S. Baek, "Performance Improvement of Concentrated-flux Type IPM Motors with Flared-shape Magnet Arrangement," Appl. Sci., vol 10, no. 17, 2020, pp. 1-15.
  10. B. Tomczuk, M. Sobol, "A Field-network Model of a Linear Oscillating Motor and its Dynamic Characteristics," IEEE Trans. Magn., vol. 41, no. 8, 2005, pp. 2362-2367. https://doi.org/10.1109/TMAG.2005.852941
  11. M. Utsuno, M. Takai, T. Mizuno, and H. Yamada, "Comparison of the Losses of a moving-magnet Type Linear Oscillatory Actuator under Two Driving Methods," IEEE Trans. Magn., vol. 38, no. 5, 2002, pp. 3300-3303. https://doi.org/10.1109/TMAG.2002.802291
  12. Hanyang university, energy conversion lab., "Electrical machines and DC motor control," hongreung publishing company, 2011
  13. G. Kim, J, Jnag, M. Park, "Complete conquest of Arduino," bogdoo publishing company, 2014