DOI QR코드

DOI QR Code

Statistical Analysis of Brain Activity by Musical Stimulation

음악적 자극에 의한 뇌 활성도의 통계적 해석

  • Received : 2020.12.11
  • Accepted : 2021.02.17
  • Published : 2021.02.28

Abstract

In this paper, we presented the results of analysis with data obtained through EEG measurements to confirm the effect of musical stimulus when performing mathematical tasks. While the subject was solving a mathematical task, favorite and unfavorite music classified according to the subject's preference were presented as musical stimulus and the tasks were divided into memorization task and procedure task. The data measured in the EEG experiments was divided into theta waves, SMR waves and mid-beta waves which are the frequency bands related to concentration to compare the relative power spectrum values. In our results, in the case of comparing no music with favorite music and no music with unfavorite music, a significant difference was observed in the several channels, and the average difference was shown in the channels F3 and F4 of the frontal lobe. In that channels, the power was found to be greater when the music was presented than the case where there was no music. Depending on the subject's preference, it was confirmed that favorite music showed greater brain activity than unfavorite music.

본 논문에서는 학습 과제 수행 시 청각 자극이 뇌에 미치는 영향을 확인하기 위하여 뇌파 계측 실험을 통해 얻은 데이터로 분석한 결과를 제시하였다. 피험자가 수학적 과제를 해결하는 동안, 피험자의 선호도에 따라 구분한 선호 음악 및 비선호 음악을 청각 자극으로 제시하였으며, 수학적 과제는 암기형 및 절차형 과제로 구분하여 뇌파를 측정하였다. 이를 집중력과 관련된 뇌파의 주파수 대역인 세타파, SMR파 및 중간베타파로 나누어 상대 파워 스펙트럼 값을 비교하였다. 본 논문의 결과로는 무음악과 선호 음악 및 무음악과 비선호 음악을 비교한 경우에서 유의한 차이를 나타내는 채널을 관측할 수 있었으며, 공통적으로 전두엽 부위의 채널인 F3 및 F4에서 평균의 차이를 나타냈다. 유의미한 차이를 나타낸 채널들에서도 음악이 없는 경우보다 음악이 제시된 경우의 파워가 더 크게 나타났으며, 선호도에 따라서는 선호 음악이 비선호 음악의 경우보다 두뇌의 활성도가 크게 나타난다는 사실을 실험결과로부터 확인할 수 있었다.

Keywords

References

  1. D. Kim and J. Choi, Electroencephalogram. Seoul: Korea Medical Book Publishing Company, 2001.
  2. Y. Jang and Y. Son, "Analysis of EEG Signal for Relativity between Musical Stimulus and Concentration for Memorization," J. of the Korea Institute of Electronic Communication Sciences, vol. 14, no. 3, June 2019, pp. 607-612. https://doi.org/10.13067/JKIECS.2019.14.3.607
  3. G. Lee, "The effect of musical stimuli on the change in EEG signal of swimmers before the competition," Master's Thesis, Changwon National University Graduate school of Physical Education, 2012.
  4. G. Choi, "The Correlation between Listening to Classical Music and the Reading Comprehension of Korean Texts -Using Mozart as Background Music-," J. of Korean Language and Literature Education, vol. 36, no. 0, Dec. 2015, pp. 309-335.
  5. Y. Jang and H. Yoon, "EEG Signal Analysis for Relativity between Musical Stimulus and Arithmetical Brain Activity," J. of the Korea Institute of Electronic Communication Sciences, vol. 13, no. 2, Apr. 2018, pp. 481-486. https://doi.org/10.13067/JKIECS.2018.13.2.481
  6. J. Shim and I. Seung, "Influences of Brain Education Program on Concentration and prefrontal EEG Activation of Children's," J. of the Korean Child Education, vol. 18, no. 3, Aug. 2009, pp. 19-36.
  7. S. Jeong and D. Choi, "Analysis of Interrelation Between EEG and Learning Experience on Music," J. of the Korean Institute of Electrical Engineers, vol. 2012, no. 10, Oct. 2012, pp. 125-126.
  8. E. Kim, "The effects of musical stimulus on EEG spectra of listeners," J. of Korean Music Therapy, vol. 7, no. 1, Jan. 2005, pp. 1-18.
  9. M. K. Stein, M. S. Smith, M. A. Henningsen, and E. S. Silver, Implementing Standards-Based Mathematics Instruction. Virginia: Reston, 2000.
  10. Y. Jung and Y. Jang, "EEG Signal Analysis on Correlation between Mathematical Task Type and Musical Stimuli," J. of the Korea Institute of Electronic Communication Sciences, vol. 15, no. 4, Aug. 2020, pp. 773-778. https://doi.org/10.13067/JKIECS.2020.15.4.773