DOI QR코드

DOI QR Code

The frequency of defective genes in vif and vpr genes in 20 hemophiliacs is associated with Korean Red Ginseng and highly active antiretroviral therapy: the impact of lethal mutations in vif and vpr genes on HIV-1 evolution

  • Cho, Young Keol (Departments of Microbiology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Kim, Jung-Eun (Departments of Microbiology, Asan Medical Center, University of Ulsan College of Medicine)
  • Received : 2019.12.02
  • Accepted : 2020.03.27
  • Published : 2021.01.15

Abstract

Background: We have reported that internal deletions in the nef, gag, and pol genes in HIV-1-infected patients are induced in those treated with Korean Red Ginseng (KRG). KRG delays the development of resistance mutations to antiretroviral drugs. Methods: The vif-vpr genes over 26 years in 20 hemophiliacs infected with HIV-1 from a single source were sequenced to investigate whether vif-vpr genes were affected by KRG and KRG plus highly active antiretroviral therapy (ART) (hereafter called GCT) and compared the results with our previous data. Results: A significantly higher number of in-frame small deletions were found in the vif-vpr genes of KRG-treated patients than at the baseline, in control patients, and in ART-alone patients (p < 0.001). These were significantly reduced in GCT patients (p < 0.05). In contrast, sequences harboring a premature stop codon (SC) were more significant in GCT patients (10.1%) than in KRG-alone patients, control (p < 0.01), and ART-alone patients (p = 0.078 for peripheral blood mononuclear cells). The proportion of SC in Vpr was similar to that in Vif, whereas the proportion of sequences revealing SC in the env-nef genes was significantly lower than that in the pol-vif-vpr genes (p < 0.01). The genetic distance was 1.8 times higher in the sequences harboring SC than in the sequences without SC (p < 0.001). Q135P in the vif gene is significantly associated with rapid progression to AIDS (p < 0.01). Conclusion: Our data show that KRG might induce sD in the vif-vpr genes and that vif-vpr genes are similarly affected by lethal mutations.

Keywords

References

  1. Daniels RS, Kang C, Patel D, Xiang Z, Douglas NW, Zheng NN, Cho HW, Lee JS. An HIV type 1 subtype B founder effect in Korea: gp160 signature patterns infer circulation of CTL-escape strains at the population level. AIDS Res Hum Retroviruses 2003;19:631-41. https://doi.org/10.1089/088922203322280847
  2. Cho YK, Kim JE, Foley BT. Genetic analysis of the full-length gag gene from the earliest Korean subclade B of HIV-1: an outbreak among Korean hemophiliacs. Viruses 2019;11. https://doi.org/10.3390/v11060545. pii: E545.
  3. Cho YK, Jung YS, Lee JS, Foley BT. Molecular evidence of HIV-1 transmission in 20 Korean individuals with haemophilia: phylogenetic analysis of the vif gene. Haemophilia 2012;18:291-9. https://doi.org/10.1111/j.1365-2516.2011.02620.x
  4. Cho YK, Foley BT, Sung HS, Kim YB, Kim JH. Molecular epidemiologic study of a human immunodeficiency virus 1 outbreak in haemophiliacs B infected through clotting factor 9 after 1990. Vox Sang 2007;92:113-20. https://doi.org/10.1111/j.1423-0410.2006.00866.x
  5. Kim BR, Kim JE, Sung H, Cho YK. Long-term follow up of HIV-1-infected Korean haemophiliacs, after infection from a common source of virus. Haemophilia 2015;21. https://doi.org/10.1111/hae.12527. comments e1-11, http://www.ncbi.nlm.nih.gov/pubmed/?term=Long-term+follow+up+of+HIV-1-infected+Korean+haemophiliacs%2C+after+infection+from+a+common+source+of+virus.
  6. Cho YK, Lim JY, Jung YS, Oh SK, Lee HJ, Sung H. High frequency of grossly deleted nef genes in HIV-1 infected long-term slow progressors treated with Korean red ginseng. Curr HIV Res 2006;4:447-57. https://doi.org/10.2174/157016206778560072
  7. Cho YK, Jung YS, Sung H. Frequent gross deletion in the HIV type 1 nef gene in hemophiliacs treated with Korean red ginseng: inhibition of detection by highly active antiretroviral therapy. AIDS Res Hum Retroviruses 2009;25:419-24. https://doi.org/10.1089/aid.2008.0178
  8. Cho YK, Jung YS. Dosage and duration effects of Korean red ginseng intake on frequency of gross deletions in the nef gene. J Ginseng Res 2010;34:219-25. https://doi.org/10.5142/jgr.2010.34.3.219
  9. Cho YK, Jung YS, Sung H, Joo CH. Frequent genetic defects in the HIV-1 5'LTR/ gag gene in hemophiliacs treated with Korean red ginseng: decreased detection of genetic defects by highly active antiretroviral therapy. J Ginseng Res 2011;35:413-20. https://doi.org/10.5142/jgr.2011.35.4.413
  10. Cho YK, Kim JE, Woo JH. Korean Red Ginseng increases defective pol gene in peripheral blood mononuclear cells of HIV-1-infected patients; inhibition of its detection during ginseng-based combination therapy. J Ginseng Res 2019;43:684-91. https://doi.org/10.1016/j.jgr.2019.05.011
  11. Cho YK, Kim JE. Effect of Korean Red Ginseng intake on the survival duration of human immunodeficiency virus type 1 patients. J Ginseng Res 2017;41:222-6. https://doi.org/10.1016/j.jgr.2016.12.006
  12. Vartanian JP, Plikat U, Henry M, Mahieux R, Guillemot L, Meyerhans A, WainHobson S. HIV genetic variation is directed and restricted by DNA precursor availability. J Mol Biol 1997;270:139-51. https://doi.org/10.1006/jmbi.1997.1104
  13. Pace C, Keller J, Nolan D, James I, Gaudieri S, Moore C, Mallal S. Population level analysis of human immunodeficiency virus type 1 hypermutation and its relationship with APOBEC3G and vif genetic variation. J Virol 2006;80:9259-69. https://doi.org/10.1128/JVI.00888-06
  14. Fourati S, Lambert-Niclot S, Soulie C, Malet I, Valantin MA, Descours B, AitArkoub Z, Mory B, Carcelain G, Katlama C, et al. HIV-1 genome is often defective in PBMCs and rectal tissues after long-term HAART as a result of APOBEC3 editing and correlates with the size of reservoirs. J Antimicrob Chemother 2012;67:2323-6. https://doi.org/10.1093/jac/dks219
  15. Norman JM, Mashiba M, McNamara LA, Onafuwa-Nuga A, Chiari-Fort E, Shen W, Collins KL. The antiviral factor APOBEC3G enhances the recognition of HIV-infected primary T cells by natural killer cells. Nat Immunol 2011;28:975-83.
  16. Cuevas JM, Geller R, Garijo R, Lopez-Aldeguer J, Sanjuan R. Extremely high mutation rate of HIV-1 in vivo. PLoS Biol 2015;13. e1002251. https://doi.org/10.1371/journal.pbio.1002251
  17. Sadler HA, Stenglein MD, Harris RS, Mansky LM. APOBEC3G contributes to HIV-1 variation through sublethal mutagenesis. J Virol 2010;84:7396-404. https://doi.org/10.1128/JVI.00056-10
  18. Rawson JM, Landman SR, Reilly CS, Mansky LM. HIV-1 and HIV-2 exhibit similar mutation frequencies and spectra in the absence of G-to-A hypermutation. Retrovirology 2015;12:60. https://doi.org/10.1186/s12977-015-0180-6.
  19. Cho YK, Jung YS, Foley BT. Phylogenetic analysis of full-length pol gene from Korean hemophiliacs and plasma donors infected with Korean subclade B of HIV-1. AIDS Res Hum Retroviruses 2011;27:613-21. https://doi.org/10.1089/aid.2010.0174
  20. Cho YK, Kim BR, Chang MS, Kim JE. Effects of Korean Red Ginseng and HAART on vif gene in 10 long-term slow progressors over 20 years: high frequency of deletions and G-to-A hypermutation. Evid Based Complement Alternat Med 2013:871648. https://doi.org/10.1155/2013/871648.
  21. Villanova F, Barreiros M, Janini LM, Diaz RS, Leal E. Genetic diversity of HIV-1 gene vif among treatment-naive Brazilians. AIDS Res Hum Retroviruses 2017;33:952-9. https://doi.org/10.1089/aid.2016.0230
  22. Fourati S, Malet I, Binka M, Boukobza S, Wirden M, Sayon S, Simon A, Katlama C, Simon V, Calvez V, et al. Partially active HIV-1 Vif alleles facilitate viral escape from specific antiretrovirals. AIDS 2010;24:2313-21. https://doi.org/10.1097/qad.0b013e32833e515a
  23. Cruz NV, Amorim R, Oliveira FE, Speranza FA, Costa LJ. Mutations in the nef and vif genes associated with progression to AIDS in elite controller and slowprogressor patients. J Med Virol 2013;85:563-74. https://doi.org/10.1002/jmv.23512
  24. De Maio FA, Rocco CA, Aulicino PC, Bologna R, Mangano A, Sen L. Effect of HIV1 Vif variability on progression to pediatric AIDS and its association with APOBEC3G and CUL5 polymorphisms. Infect Genet Evol 2011;11:1256-62. https://doi.org/10.1016/j.meegid.2011.04.020
  25. Jacquot G, Le Rouzic E, Maidou-Peindara P, Maizy M, Lefrere JJ, Daneluzzi V, Monteiro-Filho CM, Hong D, Planelles V, Morand-Joubert L, et al. Characterization of the molecular determinants of primary HIV-1 Vpr proteins: impact of the Q65R and R77Q substitutions on Vpr functions. PLoS One 2009;4. https://doi.org/10.1371/journal.pone.0007514. e7514.
  26. Caly L, Saksena NK, Piller SC, Jans DA. Impaired nuclear import and viral incorporation of Vpr derived from a HIV long-term non-progressor. Retrovirology 2008;5:67. https://doi.org/10.1186/1742-4690-5-67.
  27. Zhang L, Huang Y, Yuan H, Tuttleton S, Ho DD. Genetic characterization of vif, vpr, and vpu sequences from long-term survivors of human immunodeficiency virus type 1 infection. Virology 1997;228:340-9. https://doi.org/10.1006/viro.1996.8378
  28. Yamada T, Iwamoto A. Comparison of proviral accessory genes between longterm nonprogressors and progressors of human immunodeficiency virus type 1 infection. Arch Virol 2000;145:1021-7. https://doi.org/10.1007/s007050050692
  29. Saurya S, Lichtenstein Z, Karpas A. Characterization of pol, vif, vpr, and vpu genes of HIV type 1 in AIDS patients with high viral load and stable CD4+ T cell counts on combination therapy. AIDS Res Hum Retroviruses 2002;18:1151-5. https://doi.org/10.1089/088922202320567905
  30. Suspene R, Rusniok C, Vartanian JP, Wain-Hobson S. Twin gradients in APO-BEC3 edited HIV-1 DNA reflect the dynamics of lentiviral replication. Nucleic Acids Res 2006;34:4677-84. https://doi.org/10.1093/nar/gkl555
  31. Geller R, Domingo-Calap P, Cuevas JM, Rossolillo P, Negroni M, Sanjuan R. The external domains of the HIV-1 envelope are a mutational cold spot. Nat Commun 2015;6:8571. https://doi.org/10.1038/ncomms9571.
  32. Ma XY, Sova P, Chao W, Volsky DJ. Cysteine residues in the Vif protein of human immunodeficiency virus type 1 are essential for viral infectivity. J Virol 1994;68:1714-20. https://doi.org/10.1128/jvi.68.3.1714-1720.1994
  33. Wieland U, Hartmann J, Suhr H, Salzberger B, Eggers HJ, Kuhn JE. In vivo genetic variability of the HIV-1 vif gene. Virology 1994;203:43-51. https://doi.org/10.1006/viro.1994.1453
  34. Adekale MA, Cane PA, McCrae MA. Changes in the Vif protein of HIV-1 associated with the development of resistance to inhibitors of viral protease. J Med Virol 2005;75:195-201. https://doi.org/10.1002/jmv.20256
  35. Jeong W, Jung IY, Choi H, Kim JH, Seong H, Ahn JY, Jeong SJ, Ku NS, Kim JM, Choi JY. Integrase strand transfer inhibitor resistance mutations in antiretroviral therapy-naive and treatment-experienced HIV patients in South Korea. AIDS Res Hum Retroviruses 2019;35:213-6. https://doi.org/10.1089/aid.2018.0213
  36. Choi JY, Kwon OK, Choi BS, Kee MK, Park M, Kim SS. The prevalence of antiretroviral multidrug resistance in highly active antiretroviral therapy-treated patients with HIV/AIDS between 2004 and 2009 in South Korea. J Clin Virol 2014;60:154-60. https://doi.org/10.1016/j.jcv.2014.02.004
  37. Cho YK, Kim BR, Kim JE, Woo JH, Foley BT. First report on a T69-ins insertion in CRF06_cpx HIV Type 1. AIDS Res Hum Retroviruses 2013;29:1079-84. https://doi.org/10.1089/aid.2013.0013
  38. Zhang H, Lu Z, Tan GT, Qiu S, Farnsworth NR, Pezzuto JM, Fong HHS. Polyacetyleneginsenoside-Ro, a novel triterpene saponin from Panax ginseng. Tetrahedron Lett 2002;43:973-7. https://doi.org/10.1016/S0040-4039(01)02310-3
  39. Lam SK, Ng TB. Sanchi ginseng (Panax notoginseng) with inhibitory effects on human immunodeficiency virus-1 reverse transcriptase. Life Sci 2002;70:3049-58. https://doi.org/10.1016/S0024-3205(02)01557-6
  40. Wang HX, Ng TB. Quinqueginsin, a novel protein with anti-human immunodeficiency virus, antifungal, ribonuclease and cell-free translation-inhibitory activities from American ginseng roots. Biochem Biophys Res Commun 2000;269. 203-8. https://doi.org/10.1006/bbrc.2000.2114
  41. Cho YK, Kim JE, Woo JH. Genetic defects in the nef gene are associated with Korean Red Ginseng intake: monitoring of nef sequence polymorphisms over 20 years. J Ginseng Res 2017;41:144-50. https://doi.org/10.1016/j.jgr.2016.02.005
  42. Bishop KN, Verma M, Kim EY, Wolinsky SM, Malim MH. APOBEC3G inhibits elongation of HIV-1 reverse transcripts. PLoS Pathog 2008;4. e1000231. https://doi.org/10.1371/journal.ppat.1000231
  43. Zhou D, Wang Y, Tokunaga K, Huang F, Sun B, Yang R. The HIV-1 accessory protein Vpr induces the degradation of the anti-HIV-1 agent APOBEC3G through a VprBP-mediated proteasomal pathway. Virus Res 2015;195:25-34. https://doi.org/10.1016/j.virusres.2014.08.021