참고문헌
- Lefebvre D, Marchand D, Leonard M, Thibault C, Block E, Cannon T. Gestion de la performance du troupeau laitier: des outils à exploiter. In: Proceedings of the Symposium Sur Les Bovins Laitiers. Cahier de Conference. Montreal, Canada: Conseil des Productions Animales du Quebec Inc.; 1995. p. 13-56.
- Hortet P, Seegers H. Loss in milk yield and related composition changes resulting from clinical mastitis in dairy cows. Prev Vet Med 1998;37:1-20. https://doi.org/10.1016/S0167-5877(98)00104-4
- Beever DE. Opportunities to improve the performance and profitability of dairy farms through better nutrition. Knowledge agriculture. In: Perspectives towards a new model of milk production. Carlow, Irland: R. Keenan & Co.; 2004. pp. 6-8.
- Fathi Nasri MH, France J, Odongo NE, Lopez S, Bannink A, Kebreab E. Modelling the lactation curve of dairy cows using the differentials growth functions. J Agric Sci 2008;146:633-41. http://dx.doi.org/10.1017/S0021859608008101
- Olori VE, Brotherstone S, Hill WG, McGuirk BJ. Fit of standard models of the lactation curve to weekly records of milk production of cows in a single herd. Livest Prod Sci 1999;58:55-63. https://doi.org/10.1016/S0301-6226(98)00194-8
- Silvestre AM, Martins AM, Santos VA, Ginja MM, Colaco JA. Lactation curves for milk, fat and protein in dairy cows: a full approach. Livest Sci 2009;122:308-13. https://doi.org/10.1016/j.livsci.2008.09.017
- Jeretina J, Babnik D, Skorjanc D. Modeling lactation curve standards for test-day milk yield in Holstein, Brown Swiss and Simmental cows. J Anim Plant Sci 2013;23:754-62.
- Box GEP, Jenkins GM. Time series analysis. Warsaw, Poland: PWN; 1983.
- Pal S, Ramasubramanian V, Mehta SC. Statistical models for forecasting milk production in India. J Indian Soc Agric Stat 2007;61:80-3.
- Paul RK, Alam W, Paul AK. Prospects of livestock and dairy production in India under time series framework. Indian J Anim Sci 2014;84:130-4.
- Macciotta NPP, Cappio-Borlino A, Pulina G. Time series autoregressive integrated moving average modeling of test-day milk yields of dairy ewes. J Dairy Sci 2000;83:1094-103. https://doi.org/10.3168/jds.S0022-0302(00)74974-5
- Osman MM, EL-Bayomi KHM, Abd El-Aziz AA, Moawed SHAM. Prediction of weekly and lactation yields of milk using time series models. Suez Canal Vet Med J 2008;13:483-96.
- Fernandez C, Gomez J, Sanchez-Seiquer P, et al. Prediction of weekly goat milk yield using autoregressive models. S Afr J Anim Sci 2004;34(Suppl 1):169-72.
- Grzesiak W, Blaszczyk P, Lacroix R. Methods of predicting milk yield in dairy cows-predictive capabilities of Wood's lactation curve and artificial neural networks (ANNs). Comput Electron Agric 2006;54:69-83. https://doi.org/10.1016/j.compag.2006.08.004
- Murphy MD, O'Mahony MJ, Shalloo L, French P, Upton J. Comparison of modelling techniques for milk-production forecasting. J Dairy Sci 2014;97:3352-63. https://doi.org/10.3168/jds.2013-7451
- Zhang F, Murphy MD. Comparative efficiency of lactation curve models using irish experimental dairy farms data. In: Proceedings of the 2016 ASABE Annual International Meeting. MI, USA: American Society of Agricultural and Biological Engineers; 2016. pp. 1. https://doi.org/10.13031/aim.20162455147
- Gantner V, Jovanovac S, Raguz N, Klopcic M, Solic D. Prediction of lactation milk yield using various milk recording methods. Biotechnol Anim Husb 2008;24:9-18.
- Salamonczyk E, Gulinski P. The course of milk production, lactation length and milk yield of primiparous depending on the age at first calving. Sci Ann Pol Soc Anim Prod 2010;6:155-63.
- Wang Y, Wang J, Zhao G, Dong Y. Application of residual modification approach in seasonal ARIMA for electricity demand forecasting: a case study of China. Energy Policy 2012;48:284-94. https://doi.org/10.1016/j.enpol.2012.05.026
- Pankratz A. Forecasting with univariate box-Jenkins models. New York, USA: John Wiley & Sons, Inc.; 1983.
- Box GEP, Jenkins GM, Reinsel GC. Time series analysis: forecasting and control. 3rd ed. Englewood Cliffs, NJ, USA: Prentice Hall; 1994.
- Ljung GM, Box GEP. On a measure of lack of fit in time series models. Biometrika 1978;65:297-303. https://doi.org/10.1093/biomet/65.2.297
- Melard G. Algorithm AS 197: a fast algorithm for the exact likelihood of autoregressive-moving average models. J R Stat Soc Ser C Appl Stat 1984;33:104-14. https://www.jstor.org/stable/2347672
- McLeod AI, Sales PRH. Algorithm AS 191: an algorithm for approximate likelihood calculation of ARMA and seasonal ARMA models. J R Stat Soc Ser C Appl Stat 1983;32:211-23. https://doi.org/10.2307/2347301
- Hurvich CM, Tsai CL. Regression and time series model selection in small samples. Biometrika 1989;76:297-307. https://doi.org/10.1093/biomet/76.2.297
- Xia J-H, Kumta AS. Feedforward neural network trained by BFGS algorithm for modeling plasma etching of silicon carbide. IEEE Trans Plasma Sci 2010;38:142-8. https://doi.org/10.1109/TPS.2009.2037151
- Mokhtari A, Ribeiro A. RES: regularized stochastic BFGS algorithm. IEEE Trans Signal Process 2014;62:6089-104. https://doi.org/10.1109/TSP.2014.2357775
- Wood PDP. Algebraic model of the lactation curve in cattle. Nature 1967;216:164-5. https://doi.org/10.1038/216164a0
- Cieslak M. Economic forecasting. Methods and applications. Warsaw, Poland: PWN; 1997.
- Wade KM, Lacroix R. The role of artificial neural networks in animal breeding. In: Smith C, editor. Proceedings of the 5th World Congress on Genetics Applied to Livestock Production; 1994 Aug 7-12: Guelph, Canada. pp. 31-4.
- Zhang F, Murphy MD, Shalloo L, Ruelle E, Upton J. An automatic model configuration and optimization system for milk production forecasting. Comput Electron Agric 2016;128:100-11. https://doi.org/10.1016/j.compag.2016.08.016
- Abudu S, King JP, Sheng Z. Comparison of the performance of statistical models in forecasting monthly total dissolved solids in the Rio Grande. JAWRA J Am Water Resour Assoc 2012;48:10-23. https://doi.org/10.1111/j.1752-1688.2011.00587.x