DOI QR코드

DOI QR Code

Genetic evaluation of sheep for resistance to gastrointestinal nematodes and body size including genomic information

  • Received : 2019.10.18
  • Accepted : 2020.03.29
  • Published : 2021.04.01

Abstract

Objective: The genetic evaluation of Santa Inês sheep was performed for resistance to gastrointestinal nematode infection (RGNI) and body size using different relationship matrices to assess the efficiency of including genomic information in the analyses. Methods: There were 1,637 animals in the pedigree and 500, 980, and 980 records of RGNI, thoracic depth (TD), and rump height (RH), respectively. The genomic data consisted of 42,748 SNPs and 388 samples genotyped with the OvineSNP50 BeadChip. The (co)variance components were estimated in single- and multi-trait analyses using the numerator relationship matrix (A) and the hybrid matrix H, which blends A with the genomic relationship matrix (G). The BLUP and single-step genomic BLUP methods were used. The accuracies of estimated breeding values and Spearman rank correlation were also used to assess the feasibility of incorporating genomic information in the analyses. Results: The heritability estimates ranged from 0.11±0.07, for TD (in single-trait analysis using the A matrix), to 0.38±0.08, for RH (using the H matrix in multi-trait analysis). The estimates of genetic correlation ranged from -0.65±0.31 to 0.59±0.19, using A, and from -0.42±0.30 to 0.57±0.16 using H. The gains in accuracy of estimated breeding values ranged from 2.22% to 75.00% with the inclusion of genomic information in the analyses. Conclusion: The inclusion of genomic information will benefit the direct selection for the traits in this study, especially RGNI and TD. More information is necessary to improve the understanding on the genetic relationship between resistance to nematode infection and body size in Santa Inês sheep. The genetic evaluation for the evaluated traits was more efficient when genomic information was included in the analyses.

Keywords

References

  1. Charlier J, van der Voort M, Kenyon F, Skuce P, Vercruysse J. Chasing helminths and their economic impact on farmed ruminants. Trends Parasitol 2014;30:361-7. https://doi.org/10.1016/j.pt.2014.04.009
  2. Zvinorova PI, Halimani TE, Muchadeyi FC, Matika O, Riggio V, Dzama K. Breeding for resistance to gastrointestinal nematodes - the potential in low-input/output small ruminant production systems. Vet Parasitol 2016;225:19-28. https://doi.org/10.1016/j.vetpar.2016.05.015
  3. Miller JE, Horohov DW. Immunological aspects of nematode parasite control in sheep. J Anim Sci 2006;84(Suppl 13):E12432. https://doi.org/10.2527/2006.8413_supplE124x
  4. Castro O, Borges L, Pereira A, et al. Modulo computacional para indicacao de tratamento anti-helmintico em caprinos e ovinos. In: Proceedings of the 4th Annual Meeting of the Regional School of Informatics of Piaui (Escola Regional de Informatica do Piaui: ERI-PI); 2018 Aug 13-15: Teresina, PI, Brasil.
  5. Stear MJ, Bishop SC, Henderson NG, Scott I. A key mechanism of pathogenesis in sheep infected with the nematode Teladorsagia circumcincta. Anim Health Res Rev 2003;4:4552. https://doi.org/10.1079/AHRR200351
  6. Guo G, Zhao F, Wang Y, Zhang Y, Du L, Su G. Comparison of single-trait and multiple-trait genomic prediction models. BMC Genet 2014;15:30. https://doi.org/10.1186/1471-215615-30
  7. Gordo DGM, Espigolan R, Tonussi RL, et al. Genetic parameter estimates for carcass traits and visual scores including or not genomic information. J Anim Sci 2016;94:1821-6. https://doi.org/10.2527/jas.2015-0134
  8. Ueno H, Goncalves PC. Manual para diagnostico das helmintoses de ruminantes. 4th ed. Tokyo, Japan: Japan International Cooperation Agency; 1988.
  9. Bath GF, Malan FS, Van Wyk JA. The "FAMACHA©" ovine anaemia guide to assist with the control of haemonchosis. In: Proceedings of the 7th Annual Congress of the Livestock Health and Production Group of the South African Veterinary Association; 1996 Jun 5-7: Port Elizabeth, EC, Republic of South Africa.
  10. Russel AJF, Doney JM, Gunn RG. Subjective assessment of body fat in live sheep. J Agric Sci 1969;72:451-4. https://doi.org/10.1017/S0021859600024874
  11. CAPRIOVI. Sistema de gerenciamento completo de rebanhos (System for complete management of flocks) [Internet]. CAPRIOVI; c2015-2016. [cited 2018 Nov 10]. Available from: https://easii.ufpi.br/capriovi/inicial.xhtml
  12. Misztal I, Tsuruta S, Lourenco D, et al. Manual for BLUPF90 family of programs; c2018 [cited 2018 Oct 20]. Available from: http://nce.ads.uga.edu/wiki/lib/exe/fetch.php?media=blupf90_all7.pdf
  13. Aguilar I, Misztal I, Johnson DL, Legarra A, Tsuruta S, Lawlor TJ. Hot topic: a unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score. J Dairy Sci 2010;93:743-52. https://doi.org/10.3168/jds.2009-2730
  14. VanRaden PM. Efficient methods to compute genomic predictions. J Dairy Sci 2008;91:4414-23. https://doi.org/10.3168/jds.2007-0980
  15. Kluska S, Lemos M, Olivieri B, et al. Genetic evaluation using single-step genomic best linear unbiased predictor (ssGBLUP) in Montana breed. In: Proceedings of the 11th World Congress on Genetics Applied to Livestock Production; 2018 February 11-16; Auckland, New Zealand.
  16. McManus C, do Prado Paim T, de Melo CB, Brasil BSAF, Paiva SR. Selection methods for resistance to and tolerance of helminths in livestock. Parasite 2014;21:56. https://doi.org/10.1051/parasite/2014055
  17. Janssens S, Vandepitte W. Genetic parameters for body measurements and linear type traits in Belgian Bleu du Maine, Suffolk and Texel sheep. Small Rumin Res 2004;54:13-24. https://doi.org/10.1016/j.smallrumres.2003.10.008
  18. Gutierrez-Gil B, Alvarez L, de la Fuente LF, Sanchez JP, San Primitivo F, Arranz JJ. A genome scan for quantitative trait loci affecting body conformation traits in Spanish Churra dairy sheep. J Dairy Sci 2011;94:4119-28. https://doi.org/10.3168/jds.2010-4027
  19. Lobo RNB, Vieira LS, de Oliveira AA, Muniz EN, da Silva JM. Genetic parameters for faecal egg count, packed-cell volume and body-weight in Santa Ines lambs. Genet Mol Biol 2009;32:288-94. http://dx.doi.org/10.1590/S1415-47572009005000032
  20. Oliveira EJ, Savegnago RP, Freitas LA, et al. Estimates of genetic parameters and cluster analysis for worm resistance and resilience in Santa Inês meat sheep. Pesqui Agropecu Bras 2018;53:1338-45. http://dx.doi.org/10.1590/s0100-204x2018001200006
  21. Coltman DW, Pilkington J, Kruuk LEB, Wilson K, Pemberton JM. Positive genetic correlation between parasite resistance and body size in a free-living ungulate population. Evolution 2001;55:2116-25. https://doi.org/10.1111/j.0014-3820.2001.tb01326.x
  22. Williams AR. Immune-mediated pathology of nematode infection in sheep - is immunity beneficial to the animal? Parasitology 2011;138:547-56. https://doi.org/10.1017/S0031182010001654
  23. Snyman MA, Fisher AD. Genetic parameters for traits associated with resistance to Haemonchus contortus in a South African Dohne Merino sheep flock. Small Rumin Res 2019; 176:76-88. https://doi.org/10.1016/j.smallrumres.2019.01.004
  24. Berenos C, Ellis PA, Pilkington JG, Lee SH, Gratten J, Pemberton JM. Heterogeneity of genetic architecture of body size traits in a free-living population. Mol Ecol 2015;24:181030. https://doi.org/10.1111/mec.13146
  25. Greer AW. Trade-offs and benefits: implications of promoting a strong immunity to gastrointestinal parasites in sheep. Parasite Immunol 2008;30:123-32. https://doi.org/10.1111/j.1365-3024.2008.00998.x
  26. Jafari S, Hashemi A. Estimation of genetic parameters for body measurements and their association with yearling liveweight in the Makuie sheep breed. South Afr J Anim Sci 2014;44:140-7. https://doi.org/10.4314/sajas.v44i2.6
  27. Hossein-Zadeh NG, Ghahremani D. Bayesian estimates of genetic parameters and genetic trends for morphometric traits and their relationship with yearling weight in Moghani sheep. Ital J Anim Sci 2018;17:586-92. https://doi.org/10.1080/1828051X.2017.1403296
  28. Clark SA, Hickey JM, Daetwyler HD, van der Werf JHJ. The importance of information on relatives for the prediction of genomic breeding values and the implications for the makeup of reference data sets in livestock breeding schemes. Genet Sel Evol 2012;44:4. https://doi.org/10.1186/1297-9686-44-4
  29. Schaeffer LR. Sire and cow evaluation under multiple trait models. J Dairy Sci 1984;67:1567-80. https://doi.org/10.3168/jds.S0022-0302(84)81479-4
  30. Pszczola M, Veerkamp RF, de Haas Y, Wall E, Strabel T, Calus MPL. Effect of predictor traits on accuracy of genomic breeding values for feed intake based on a limited cow reference population. Animal 2013;7:1759-68. https://doi.org/10.1017/S175173111300150X