
International Journal of Internet, Broadcasting and Communication Vol.13 No.1 180-186 (2021)

http://dx.doi.org/10.7236/IJIBC.2021.13.1.180

Design and Implementation of I/O Performance Benchmarking Framework

for Linux Container

Gijun Oh, Suho Son, Junseok Yang and Sungyong Ahn

School of Computer Science and Engineering, Pusan National University, Korea
{kijunking, suho.son, junseokyang, sungyong.ahn}@pusan.ac.kr

Abstract

In cloud computing service it is important to share the system resource among multiple instances according

to user requirements. In particular, the issue of efficiently distributing I/O resources across multiple instances is

paid attention due to the rise of emerging data-centric technologies such as big data and deep learning. However,

it is difficult to evaluate the I/O resource distribution of a Linux container, which is one of the core technologies

of cloud computing, since conventional I/O benchmarks does not support features related to container

management. In this paper, we propose a new I/O performance benchmarking framework that can easily evaluate

the resource distribution of Linux containers using existing I/O benchmarks by supporting container-related

features and integrated user interface. According to the performance evaluation result with trace-replay

benchmark, the proposed benchmark framework has induced negligible performance overhead while providing

convenience in evaluating the I/O performance of multiple Linux containers

Keywords: Benchmark, Cloud Computing, Linux container, Virtualization, Resource Monitoring

1. Introduction

In a cloud computing environment, it is very important to meet the requirements of multiple users for system

resources through QoS (Quality of Service) control[1,2]. The virtualization is a key technology to share the

pool of computing resources among multiple isolated instances (applications or users)[3]. In particular, the

container-based virtualization is paid attention because it can allocate system resources more efficiently than

the traditional hypervisor-based virtualization. As shown in Figure 1(a), the hypervisor-based virtualization

must create a separate guest OS for each instance, resulting in storage and memory space overhead due to

redundant installation of the guest OS[4]. Moreover, performance degradation occurs because requests for

system resources must go through both the guest OS and the host OS. On the other hand, as can be seen in

Figure 1(b), container-based virtualization does not require a separate guest OS and has much less performance

degradation due to virtualization because it supports system resource distribution and isolation at the operating

system level[5,6].

Linux container[7] is most popular container-based virtualization technology, using Linux Cgroups(Control

IJIBC 21-1-21

Manuscript Received: January. 3, 2021 / Revised: January. 8, 2021 / Accepted: January. 12, 2021
Corresponding Author: sungyong.ahn@pusan.ac.kr(Sungyong Ahn)
Tel: +82-51-510-2422, Fax: +82-51-517-2431
Assistant Professor, School of Computer Science and Engineering, Pusan National University, Korea

International Journal of Internet, Broadcasting and Communication Vol.13 No.1 180-186 (2021) 181

groups)[8] to allocates isolated system resources such as CPU, memory, I/O bandwidth to multiple Linux

containers. Recently, as processing of large amounts of data becomes important due to the rise of emerging

data-centric technologies such as big data and deep learning, research is being conducted to efficiently

distribute I/O resources for high-performance storage such as NVMe SSDs in Linux cgroups[9-11].

However, the existing widely used I/O benchmark programs are not suitable for evaluating the resource

distribution methods of Linux containers due to the following problems. At first, it is difficult to measure and

track the I/O performance of multiple containers concurrently because most of the I/O benchmark programs

do not support container related features such as container creation and allocation. The second is that an

integrated interface is needed to use various I/O benchmarks because I/O performance should be evaluated

with a variety of workloads such as synthetic workload, trace-driven workload, and specific application

workload. Therefore, in this paper, we propose a novel I/O performance benchmarking framework for Linux

container that can simultaneously measure the I/O performance of multiple containers and monitor the resource

distribution status in real time using various kinds of benchmark programs. The proposed framework is

implemented using JSON and Python, and provides web-based interface supporting various I/O benchmarks.

The performance evaluation is conducted by applying trace-replay, a block I/O trace driven benchmark.

According to the evaluation results, it is possible to evaluate the distribution of I/O resources of multiple

containers with less than 1% performance overhead using the proposed framework.

The remainder of this paper organizes as follows. First, Section 2 describes the overall architecture and

detailed implementation of the proposed I/O benchmarking framework as well as its design goal. The

experiment results are presented to verify the efficiency and scalability of the proposed framework in Section

3. At last, Section 4 gives the conclusion of this paper.

2. Design and Implementation

2.1 Design goals

As mentioned above, existing I/O benchmark programs lack the support of evaluating the resource

distribution method of Linux container. Table 1 describes whether the popular I/O benchmark programs

Figure 1. Virtualization Architectures

Table 1. Linux Container Support in I/O benchmarks

Benchmark Support or Not

Fio[12] Support only cgroup allocation (not I/O weight, namespace)

Filebench[13] Does not support

YCSB[14] Does not support

182 Design and Implementation of I/O Performance Benchmarking Framework for Linux Container

support Linux containers. According to Table 1, I/O benchmark programs other than Fio do not support for

Linux container at all. Fio is also not sufficient to evaluate the distribution of I/O resource for Linux container

because it cannot allocate I/O weights and namespaces for each cgroup.

Therefore, we have several design goals for implementing real-time I/O benchmarking framework for Linux

container as follows: (1) It should support plentiful features related to Linux container such as cgroup creation

/ assignment and configuration of I/O weight of each container. (2) I/O resource used by each container should

be able to be tracked and monitored concurrently in real time. (3) Various I/O benchmark programs should be

able to be simply merged to our proposed benchmarking framework and operated with web-based unified

interface. According to these requirements, we propose a novel I/O benchmarking framework for the Linux

container that makes the best use of the existing benchmark programs, automatically creates containers and

assigns benchmark to each of them.

2.2 Implementation

As you can see in Figure 2, the proposed system consists of the four layers contain the user interface,

BAL(Benchmark Abstraction Layer), BEL(Benchmark Execution Layer), and benchmark programs. Because

each layer independent from the other layers, they do not affect each other. To ensure independence between

layers, each layer communicates with the other layer with structured data written in JSON format, as well as

BAL and BEL are provided in the form of Linux shared library.

At first, as you can see in Figure 3, the user interface layer provides web-based integrated interface that

receives parameters needed to configure benchmark programs and containers such as the number of cgroups,

I/O weights, target benchmark, and target device. The submitted parameters by a user are turned into a

structured data format by using JSON that is transferred to the below layer, BAL. Here, the name of benchmark

program is used as a key to select the appropriate module in the below layer, BEL. By using this, BEL’s module

can assign and execute benchmarks in each container. After completion of the benchmark program user

interface layer would get evaluation result of benchmark program for each container from the below layer as

structured data form. In addition, since the BAL and BEL are provided in the form of a Linux library, various

user interfaces such as web, desktop application, or terminal can be used if they support Linux shared library.

Figure 2. The Architecture of the Proposed Benchmarking Framework for Linux container

Key Value

Benchmark-1
Module

Address of Benchmark-1’s
“init()”

Benchmark-2
Module

Address of Benchmark-2’s
“init()”

Init

Generic Initializer
Benchmark Module Name

User Interface

Init

① Call Init

② Find Module’s Init

③ Specific benchmark module initialization

Get

Get Buffer Free Terminate

BEL

BAL

User Interface

Benchmark

Execution

Execution

④: Execute theBuffer

Benchmark-1

⑦ Deallocate Buffer

⑧ Deallocate resource
and the benchmark module

⑤: Allocate Buffer

⑥: Insert benchmark
result to Buffer

Benchmark-1
Config (JSON)

Benchmark-2

InitGet Execution

Benchmark-2 ModuleBenchmark-1 Module

Benchmark Matching List

benchmark with config

International Journal of Internet, Broadcasting and Communication Vol.13 No.1 180-186 (2021) 183

BAL is the abstraction layer that decodes various parameters received from the user interface layer and call

appropriate methods of BEL to perform benchmarking. BAL exposes five interfaces (Init, Execution, Get,

Buffer Free, and Terminate) to the user interface. The “Init” interface performs initialization based on the

configuration data delivered from user interface layer. It selects an appropriate module in the BEL via a key

which is in configuration data. After an appropriate module is selected, the initialization method is called from

the module in the BEL. The “Execution” interface that can be called after initialization sends a signal about

executing the benchmark program to the module. After that, the “Get” interface takes the I/O performance

status like I/O bandwidth and IOPS in real time from a benchmark running on each container. The collected

I/O performance data is stored at the buffer allocated by “Get” interface. The data is delivered to the user

interface and displays as seen as in Figure 4. To manage the buffer storing I/O performance data, the BAL has

“Buffer Free” interface that deallocates the buffer, so that user interface layer does not have to care about the

management of the buffer. Finally, the “Terminate” interface is called when we want to stop or finish

benchmarking. It decouples the BAL and the benchmark module of BEL and resets the configurations of the

benchmarking system.

BEL is an implementation layer that provides the methods for the interface in the abstraction layer, BAL.

The BEL has modules per benchmark, each of which has three methods for “Init”, “Execution” and “Get”. The

selected module’s “Init” method initializes the configurations of the system consisted BAL and BEL. It

generates containers according to configuration delivered from BAL and allocates each benchmark process to

them. Then, the “Execution” method of BEL starts to run designated benchmark program in response to the

execution signal delivered by “Execution” interface in the BAL. The “Get” method is executed by BAL’s “Get”

interface. It first requests a measured I/O performance data to each container’s benchmark. So, each benchmark

process sends its own measured I/O performance data to the module in BEL, either through pipes, message

queues, or shared memory, depending on the kind of benchmark. For example, the Fio generates its real-time

benchmarking output via standards out. In this case, we can get the information by using pipes that allow

redirecting standard I/O to the other files. At last, the module in BEL converts performance data collected from

benchmark processes into structured data form by using JSON, then transfers it to BAL through the buffer

dynamically allocated by BAL’s “Get” interface.

Figure 3. The Web-based User-Interface of the Proposed Benchmarking Framework

184 Design and Implementation of I/O Performance Benchmarking Framework for Linux Container

As Figure 2 describes, the sequence of the proposed framework can be organized as follows: (1) A user

inputs the configuration values in the user interface and submits them as structured data form to BAL’s “Init”

interface. (2) The “Init” interface finds and executes the initialization method of the appropriate benchmark

module in BEL based on the configuration data delivered from BAL. (3) The benchmark module initializes

the configuration of the specified benchmark and Linux containers, and allocates benchmark programs to each

container. (4) The benchmark program in each container is started by an execution signal send by “Execution”

interface of BAL. (5) To get the I/O performance data measured by benchmark programs in real-time, the “Get”

interface allocates the buffer for receiving the benchmarking result data and call the “Get” method of the

specified module in the BEL. (6) The benchmark module retrieves the result data from the benchmark in the

container, and inserts it into the buffer. The user interface layer can access the result data through this buffer,

then print it through the web-based interface. (7) After the received data is used, BAL’s “Buffer Free” interface

deallocates the buffer. (8) When all sequences are complete, the BAL’s “Terminate” interface resets the system

configuration and deallocates the benchmark module in BEL.

Figure 4. Monitoring Benchmark Results of Multiple containers in real time

Table 2. Hardware and Software Setup

Component Specification

CPU Intel Xeon CPU E5-2620 v4 @ 2.10 GHz

Memory 32GB

Storage Intel SSD DC P4500 1.0TB

OS (Kernel) Ubuntu 18.04.2 LTS (Linux Kernel 5.3)

Table 3. Trace-Replay Workloads Characteristic

Component Specification

Size of Total I/O 30GB

Size of Average I/O 14KB

Read/Write Ratio (R:W) 3.64:1

International Journal of Internet, Broadcasting and Communication Vol.13 No.1 180-186 (2021) 185

(a) 4 containers (b) 8 containers

Figure 5. I/O Performance Evaluation Results with Multiple containers

3. Experiment Results

In this section, we evaluate the performance overhead and scalability of the proposed benchmark framework.

The proposed benchmark framework is implemented by using JSON and Python and supports web-based

integrated interface and trace-replay benchmark[15] which replays block I/O traces. The Figure 3 and 4 shows

the configuration page and real-time I/O performance monitoring view, respectively. In the Figure 3, you can

see the several input boxes on the figure which are related to the initial configurations for benchmark and

Linux container as well as “Start” button. When the button is pressed, both BAL’s “Init” and “Execution”

interface are called sequentially. The Figure 5 shows the changes in I/O performance of each container in 1-

second intervals, including I/O bandwidth, I/O latency and average I/O bandwidth. The experimental

environment and workload characteristics used for trace-replay are described in Table 2 and 3, respectively.

Note that sample block I/O trace(sample1.dat) provided by the trace-replay benchmark is used as the workload.

To verify the performance overhead of our benchmarking framework, we measured I/O bandwidth of

multiple containers using trace-replay through the proposed benchmarking framework and compared it to the

case where the benchmark was driven using a shell script. The Figure 5 shows that the proposed benchmarking

framework (BAL+BEL) can evaluate the I/O performance of multiple containers with negligible performance

overhead compared to using shell script (Shell). Moreover, even if the number of containers increases, the

performance overhead does not increase. It means that the proposed framework has good scalability as well as

low performance overhead. In addition, the proposed benchmarking framework is more convenient to evaluate

the distribution of I/O resources for Linux container than using shell command because it provides graphical

information on real-time benchmarking results.

4. Conclusion

A cloud computing service has a responsible for satisfying the service requirements of different users

through QoS(Quality of Service) control. In particular, with the rise of emerging data-centric technologies such

as big data and deep learning, the issue of efficiently distributing I/O resources across multiple instances has

become important. However, the existing popular I/O benchmarks are not suitable for evaluating the resource

distribution method of Linux containers due to the lack of support for containers. In this paper, we have

proposed the novel I/O performance benchmarking framework for Linux container that supports container

related features and an integrated user interface for existing I/O benchmarks. As a result, the proposed

benchmarking framework can simultaneously measure the I/O performance of multiple containers and monitor

0

15

30

45

60

75

90

105

120

135

150

165

1 2 3 4

I/
O

 B
an

d
w

id
th

 (
M

B
/s

)

Container ID

Shell BAL+BEL

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8

I/
O

 B
an

dw
id

th
 (

M
B

/s
)

Container ID

Shell BAL+BEL

186 Design and Implementation of I/O Performance Benchmarking Framework for Linux Container

changes in resource distribution status by using various kinds of benchmark programs. The proposed

benchmarking framework is implemented by using JSON and Python, and supports web-based integrated

interface to configure benchmark programs and containers. According to the performance evaluation result

with trace-replay benchmark, the proposed benchmarking framework has induced negligible performance

overhead while providing convenience in evaluating the I/O performance of multiple Linux containers.

Acknowledgement

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea

government(MSIT) (NRF-2018R1D1A3B07050034).

References

[1] K. Jang. S. Shin, and J. Jung, "A Study on Recognization for Quality Importance of Cloud Services," The Journal
of the Institute of Internet, Broadcasting and Communication(JIIBC), Vol. 15, No. 2, pp. 39-44, April 2015.
DOI: https://doi.org/10.7236/JIIBC.2015.15.2.39

[2] A. Gulati, G. Shanmuganathan, A. Holler, and I. Ahmad, “Cloud Scale Resource Management: Challenges and
Techniques,” in Proc. 3rd USENIX conference on Hot topics in cloud computing, pp. 3-3, June 14-17, 2011.
DOI: https://dl.acm.org/doi/abs/10.5555/2170444.2170447

[3] B. Jennings and R. Stadler, “Resource Management in Clouds: Survey and Research Challenges,” Journal of
Network and Systems Management, Vol. 23, No. 3, pp. 567-619, Mar. 2015.
DOI: https://doi.org/10.1007/s10922-014-9307-7

[4] J. Sahoo, S. Mohapatra, and R. Lath, “Virtualization: A Survey on Concepts, Taxonomy and Associated Security
Issues,” in Proc. 2nd International Conference on Computer and Network Technology, pp. 222-226, April 23-25,
2010.
DOI: https://doi.org/10.1109/ICCNT.2010.49

[5] Z. Li, M. Kihl, Q. Lu, and J. A. Andersson, " Performance Overhead Comparison between Hypervisor and Container
Based Virtualization," in Proc. IEEE 31st International Conference on Advanced Information Networking and
Applications (AINA), pp. 955-962, March 27-29, 2017.
DOI: https://doi.org/10.1109/AINA.2017.79

[6] A. M. Joy, “Performance comparison between Linux containers and virtual machines,” in Proc. 2015 International
Conference on Advances in Computer Engineering and Applications, pp. 342-346, March 19-20, 2015
DOI: https://doi.org/10.1109/ICACEA.2015.7164727

[7] LXC. https://linuxcontainers.org/lxc/introduction/
[8] Linux kernel cgroups document. https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
[9] P. Valente and A. Avanzini, “Evolution of the BFQ Storage I/O Scheduler,” in Proc. 2015 Mobile Systems

Technologies Workshop, pp.15-20, May 22-22, 2015.
DOI: https://doi.org/10.1109/MST.2015.9

[10] J. Kim, D. Lee, S. H. Noh. "Towards SLO Complying SSDs Through OPS Isolation," in Proc. 13th USENIX
Conference on File and Storage Technologies (FAST 2015), pp. 183-189. Feb. 16-19, 2015.
DOI: https://dl.acm.org/doi/10.5555/2750482.2750496

[11] P. Kwon and S. Ahn, “Dynamic Bandwidth Distribution Method for High Performance Non-volatile Memory in
Cloud Computing Environment,” The Journal of the Institute of Internet, Broadcasting and Communication(JIIBC),
Vol. 20, No. 3, pp. 97-103, Jun. 2020.
DOI: https://doi.org/10.7236/JIIBC.2020.20.3.97

[12] Fio: Flexible I/O tester. https://github.com/axboe/fio
[13] V. Tarasov, E. Zadok, and S. Shepler, “Filebench: A Flexible Framework for File System Benchmarking,”

USENIX ;login, Vol. 41, No. 1, pp. 6–12, 2016.
[14] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sear, “Benchmarking Cloud Serving Systems with

YCSB,” in Proc. 1st ACM symposium on Cloud computing, pp. 143-154, June 10-11, 2010
DOI: https://doi.org/10.1145/1807128.1807152

[15] Trace-replay. https://github.com/yongseokoh/trace-replay.

