DOI QR코드

DOI QR Code

Immunosecurity: immunomodulants enhance immune responses in chickens

  • Yu, Keesun (Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University) ;
  • Choi, Inhwan (Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University) ;
  • Yun, Cheol-Heui (Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University)
  • Received : 2020.12.19
  • Accepted : 2021.02.01
  • Published : 2021.03.01

Abstract

The global population has increased with swift urbanization in developing countries, and it is likely to result in a high demand for animal-derived protein-rich foods. Animal farming has been constantly affected by various stressful conditions, which can be categorized into physical, environmental, nutritional, and biological factors. Such conditions could be exacerbated by banning on the use of antibiotics as a growth promoter together with a pandemic situation including, but not limited to, African swine fever, avian influenza, and foot-and-mouth disease. To alleviate these pervasive tension, various immunomodulants have been suggested as alternatives for antibiotics. Various studies have investigated how stressors (i.e., imbalanced nutrition, dysbiosis, and disease) could negatively affect nutritional physiology in chickens. Importantly, the immune system is critical for host protective activity against pathogens, but at the same time excessive immune responses negatively affect its productivity. Yet, comprehensive review articles addressing the impact of such stress factors on the immune system of chickens are scarce. In this review, we categorize these stressors and their effects on the immune system of chickens and attempt to provide immunomodulants which can be a solution to the aforementioned problems facing the chicken industry.

Keywords

References

  1. Ramos S, MacLachlan M, Melton A. Impacts of the 2014-2015 highly pathogenic avian influenza outbreak on the U.S. poultry sector. Washington, DC, USA: USDA; 2017.
  2. Lee JS, Kang S, Kim MJ, Han SG, Lee HG. Dietary supplementation with combined extracts from garlic (Allium sativum), brown seaweed (Undaria pinnatifida), and pinecone (Pinus koraiensis) improves milk production in Holstein cows under heat stress conditions. Asian-Australas J Anim Sci 2020;33:111-9. https://doi.org/10.5713/ajas.19.0536
  3. Wickramasuriya SS, Macelline SP, Kim E, et al. Physiological impact on layer chickens fed corn distiller's dried grains with solubles naturally contaminated with deoxynivalenol. Asian-Australas J Anim Sci 2020;33:313-22. https://doi.org/10.5713/ajas.19.0199
  4. Sharma B, Nimje P, Tomar SK, Dey D, Mondal S, Kundu SS. Effect of different fat and protein levels in calf ration on performance of Sahiwal calves. Asian-Australas J Anim Sci 2020; 33:53-60. https://doi.org/10.5713/ajas.18.0604
  5. Buzala M, Janicki B. Review: effects of different growth rates in broiler breeder and layer hens on some productive traits. Poult Sci 2016;95:2151-9. https://doi.org/10.3382/ps/pew173
  6. Barekatain MR, Swick RA. Composition of more specialised pre-starter and starter diets for young broiler chickens: a review. Anim Prod Sci 2016;56:1239-47. https://doi.org/10.1071/AN15333
  7. Raza A, Bashir S, Tabassum R. An update on carbohydrases: growth performance and intestinal health of poultry. Heliyon 2019;5:e01437. https://doi.org/10.1016/j.heliyon.2019.e01437
  8. Hashemipour H, Khaksar V, Rubio LA, Veldkamp T, van Krimpen MM. Effect of feed supplementation with a thymol plus carvacrol mixture, in combination or not with an NSP-degrading enzyme, on productive and physiological parameters of broilers fed on wheat-based diets. Anim Feed Sci Technol 2016;211:117-31. https://doi.org/10.1016/j.anifeedsci.2015.09.023
  9. Latorre JD, Hernandez-Velasco X, Bielke LR, et al. Evaluation of a Bacillus direct-fed microbial candidate on digesta viscosity, bacterial translocation, microbiota composition and bone mineralisation in broiler chickens fed on a rye-based diet. Br Poult Sci 2015;56:723-32. https://doi.org/10.1080/00071668.2015.1101053
  10. Abbasi MA, Mahdavi AH, Samie AH, Jahanian R. Effects of different levels of dietary crude protein and threonine on performance, humoral immune responses and intestinal morphology of broiler chicks. Braz J Poult Sci 2014;16:35-44. https://doi.org/10.1590/S1516-635X2014000100005
  11. Payne CJ, Scott TR, Dick JW, Glick B. Immunity to Pasteurella multocida in protein-deficient chickens. Poult Sci 1990;69: 2134-42. https://doi.org/10.3382/ps.0692134
  12. Shojadoost B, Vince AR, Prescott JF. The successful experimental induction of necrotic enteritis in chickens by Clostridium perfringens: a critical review. Vet Res 2012;43:74. https://doi.org/10.1186/1297-9716-43-74
  13. Calder PC. Branched-chain amino acids and immunity. J Nutr 2006;136:288S-93S. https://doi.org/10.1093/jn/136.1.288S
  14. Peng JL, Bai SP, Wang JP, Ding XM, Zeng QF, Zhang KY. Methionine deficiency decreases hepatic lipid exportation and induces liver lipid accumulation in broilers. Poult Sci 2018;97:4315-23. https://doi.org/10.3382/ps/pey317
  15. Rubin LL, Ribeiro AML, Canal CW, et al. Influence of sulfur amino acid levels in diets of broiler chickens submitted to immune stress. 2007;9:53-9. https://doi.org/10.1590/S1516-635X2007000100008
  16. Attia YA, Al-Harthi MA, Abo El-Maaty HM. The effects of different oil sources on performance, digestive enzymes, carcass traits, biochemical, immunological, antioxidant, and morphometric responses of broiler chicks. Front Vet Sci 2020; 7:181. https://doi.org/10.3389/fvets.2020.00181
  17. Abudabos AM, Alyemni AH. Effects of the essential oil blend CRINA® poultry in feed on broiler performance and gut microbiology. Ital J Anim Sci 2013;12:e83.
  18. Pham VH, Kan L, Huang J, et al. Dietary encapsulated essential oils and organic acids mixture improves gut health in broiler chickens challenged with necrotic enteritis. J Anim Sci Biotechnol 2020;11:18. https://doi.org/10.1186/s40104-019-0421-y
  19. Mohiti-Asli M, Ghanaatparast-Rashti M. Comparison of the effect of two phytogenic compounds on growth performance and immune response of broilers. J Appl Anim Res 2017;45: 603-8. https://doi.org/10.1080/09712119.2016.1243119
  20. Dibner JJ, Atwell CA, Kitchell ML, Shermer WD, Ivey FJ. Feeding of oxidized fats to broilers and swine: effects on enterocyte turnover, hepatocyte proliferation and the gut associated lymphoid tissue. Anim Feed Sci Technol 1996;62: 1-13. https://doi.org/10.1016/S0377-8401(96)01000-0
  21. Tan L, Rong D, Yang Y, Zhang B. The effect of oxidized fish oils on growth performance, oxidative status, and intestinal barrier function in broiler chickens. J Appl Poult Res 2019;28: 31-41. https://doi.org/10.3382/japr/pfy013
  22. Liang F, Jiang S, Mo Y, Zhou G, Yang L. Consumption of oxidized soybean oil increased intestinal oxidative stress and affected intestinal immune variables in yellow-feathered broilers. Asian-Australas J Anim Sci 2015;28:1194-201. https://doi.org/10.5713/ajas.14.0924
  23. Dalloul RA, Lillehoj HS, Shellem TA, Doerr JA. Effect of vitamin A deficiency on host intestinal immune response to Eimeria acervulina in broiler chickens. Poult Sci 2002;81: 1509-15. https://doi.org/10.1093/ps/81.10.1509
  24. Adedokun SA, Olojede OC. Optimizing gastrointestinal integrity in poultry: the role of nutrients and feed additives. Front Vet Sci 2019;5:348. https://doi.org/10.3389/fvets.2018.00348
  25. Pompeu MA, Cavalcanti LFL, Toral FLB. Effect of vitamin E supplementation on growth performance, meat quality, and immune response of male broiler chickens: a meta-analysis. Livest Sci 2018;208:5-13. https://doi.org/10.1016/j.livsci.2017.11.021
  26. Yang P, Wang H, Zhu M, Ma Y. Effects of choline chloride, copper sulfate and zinc oxide on long-term stabilization of microencapsulated vitamins in premixes for weanling piglets. Animals 2019;9:1154. https://doi.org/10.3390/ani9121154
  27. Yuan J, Roshdy AR, Guo Y, Wang Y, Guo S. Effect of dietary vitamin A on reproductive performance and immune response of broiler breeders. PLoS One 2014;9:e105677. https://doi.org/10.1371/journal.pone.0105677
  28. Maurya VK, Aggarwal M. Factors influencing the absorption of vitamin D in GIT: an overview. J Food Sci Technol 2017; 54:3753-65. https://doi.org/10.1007/s13197-017-2840-0
  29. Ahsan U, Cengiz O, Raza I, et al. Sodium butyrate in chicken nutrition: the dynamics of performance, gut microbiota, gut morphology, and immunity. Worlds Poult Sci J 2016;72:265-75. https://doi.org/10.1017/S0043933916000210
  30. Trompette A, Gollwitzer ES, Pattaroni C, et al. Dietary fiber confers protection against flu by shaping Ly6c- patrolling monocyte hematopoiesis and CD8+ T cell metabolism. Immunity 2018;48:992-1005. https://doi.org/10.1016/j.immuni.2018.04.022
  31. Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Reddy DN. Role of the normal gut microbiota. World J Gastroenterol 2015;21:8787-803. https://doi.org/10.3748/wjg.v21.i29.8787
  32. Apajalahti J, Vienola K. Interaction between chicken intestinal microbiota and protein digestion. Anim Feed Sci Technol 2016;221:323-30. https://doi.org/10.1016/j.anifeedsci.2016.05.004
  33. Ballou AL, Ali RA, Mendoza MA, et al. Development of the chick microbiome: how early exposure influences future microbial diversity. Front Vet Sci 2016;3:2. https://doi.org/10.3389/fvets.2016.00002
  34. Lee S, La TM, Lee HJ, et al. Characterization of microbial communities in the chicken oviduct and the origin of chicken embryo gut microbiota. Sci Rep 2019;9:6838. https://doi.org/10.1038/s41598-019-43280-w
  35. Schokker D, Jansman AJM, Veninga G, et al. Perturbation of microbiota in one-day old broiler chickens with antibiotic for 24 hours negatively affects intestinal immune development. BMC Genomics 2017;18:241. https://doi.org/10.1186/s12864-017-3625-6
  36. Lee IK, Gu MJ, Ko KH, et al. Regulation of CD4+ CD8- CD25+ and CD4+ CD8+ CD25+ T cells by gut microbiota in chicken. Sci Rep 2018;8:8627. https://doi.org/10.1038/s41598-018-26763-0
  37. Shang Y, Kumar S, Oakley B, Kim WK. Chicken gut microbiota: importance and detection technology. Front Vet Sci 2018;5:254. https://doi.org/10.3389/fvets.2018.00254
  38. Oakley BB, Kogut MH. Spatial and temporal changes in the broiler chicken cecal and fecal microbiomes and correlations of bacterial taxa with cytokine gene expression. Front Vet Sci 2016;3:11. https://doi.org/10.3389/fvets.2016.00011
  39. Wu W, Xiao Z, An W, Dong Y, Zhang B. Dietary sodium butyrate improves intestinal development and function by modulating the microbial community in broilers. PLoS One 2018; 13:e0197762. https://doi.org/10.1371/journal.pone.0197762
  40. Zou X, Ji J, Qu H, et al. Effects of sodium butyrate on intestinal health and gut microbiota composition during intestinal inflammation progression in broilers. Poult Sci 2019;98:4449-56. https://doi.org/10.3382/ps/pez279
  41. Sunkara LT, Jiang W, Zhang G. Modulation of antimicrobial host defense peptide gene expression by free fatty acids. PLoS One 2012;7:49558. https://doi.org/10.1371/journal.pone.0049558
  42. Mathlouthi N, Mallet S, Saulnier L, Quemener B, Larbier M. Effects of xylanase and β-glucanase addition on performance, nutrient digestibility, and physico-chemical conditions in the small intestine contents and caecal microflora of broiler chickens fed a wheat and barley-based diet. 2002;51:395-406. https://doi.org/10.1051/animres:2002034
  43. Apajalahti J. Comparative gut microflora, metabolic challenges, and potential opportunities. J Appl Poult Res 2005;14:444-53. https://doi.org/10.1093/japr/14.2.444
  44. Chimerel C, Murray AJ, Oldewurtel ER, Summers DK, Keyser UF. The effect of bacterial signal indole on the electrical properties of lipid membranes. Chemphyschem 2013;14:417-23. https://doi.org/10.1002/cphc.201200793
  45. Shin NR, Whon TW, Bae JW. Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol 2015; 33:496-503. https://doi.org/10.1016/j.tibtech.2015.06.011
  46. Murakami M, Iwamoto J, Honda A, et al. Detection of gut dysbiosis due to reduced Clostridium subcluster XIVa using the fecal or serum bile acid profile. Inflamm Bowel Dis 2018; 24:1035-44. https://doi.org/10.1093/ibd/izy022
  47. Li H, Liu X, Chen F, et al. Avian influenza virus subtype H9N2 affects intestinal microbiota, barrier structure injury, and inflammatory intestinal disease in the chicken ileum. Viruses 2018;10:270. https://doi.org/10.3390/v10050270
  48. Wang J, Li F, Wei H, Lian ZX, Sun R, Tian Z. Respiratory influenza virus infection induces intestinal immune injury via microbiota-mediated Th17 cell-dependent inflammation. J Exp Med 2014;211:2397-410. https://doi.org/10.1084/jem.20140625
  49. Tabler TW, Greene ES, Orlowski SK, Hiltz JZ, Anthony NB, Dridi S. Intestinal barrier integrity in heat-stressed modern broilers and their ancestor wild jungle fowl. Front Vet Sci 2020;7:249. https://doi.org/10.3389/fvets.2020.00249
  50. Hirakawa R, Nurjanah S, Furukawa K, et al. Heat stress causes immune abnormalities via massive damage to effect proliferation and differentiation of lymphocytes in broiler chickens. Front Vet Sci 2020;7:46. https://doi.org/10.3389/fvets.2020.00046
  51. Berners-Lee M, Kennelly C, Watson R, Hewitt CN. Current global food production is sufficient to meet human nutritional needs in 2050 provided there is radical societal adaptation. 2018;6:52. https://doi.org/10.1525/elementa.310
  52. Broom LJ. The sub-inhibitory theory for antibiotic growth promoters. Poult Sci 2017;96:3104-8. https://doi.org/10.3382/ps/pex114
  53. Cardinal KM, Kipper M, Andretta I, Ribeiro AML. With-drawal of antibiotic growth promoters from broiler diets: performance indexes and economic impact. Poult Sci 2019; 98:6659-67. https://doi.org/10.3382/ps/pez536
  54. The announcement No. 194 of the ministry of agriculture and rural affairs of the people's Republic of China [Internet]. Zhejiang, China: Phiphar Healthcare Limited; c2020 [cited 2020 Nov 24]. Available from: https://www.phiphar.com/the-announcement-no-194-of-the-ministry-of-agriculture-and-rural-affairs-of-the-peoples-republic-of-china/
  55. Butaye P, Devriese LA, Haesebrouck F. Antimicrobial growth promoters used in animal feed: effects of less well known antibiotics on gram-positive bacteria. Clin Microbiol Rev 2003;16:175-88. https://doi.org/10.1128/CMR.16.2.175-188.2003
  56. Dong L, Tong Z, Linghu D, et al. Effects of sub-minimum inhibitory concentrations of antimicrobial agents on Streptococcus mutans biofilm formation. Int J Antimicrob Agents 2012;39:390-5. https://doi.org/10.1016/j.ijantimicag.2012.01.009
  57. Wisselink HJ, Cornelissen JBWJ, Mevius DJ, Smits MA, Smidt H, Rebel JMJ. Antibiotics in 16-day-old broilers temporarily affect microbial and immune parameters in the gut. Poult Sci 2017;96:3068-78. https://doi.org/10.3382/ps/pex133
  58. Guban J, Korver DR, Allison GE, Tannock GW. Relationship of dietary antimicrobial drug administration with broiler performance, decreased population levels of Lactobacillus salivarius, and reduced bile salt deconjugation in the ileum of broiler chickens. Poult Sci 2006;85:2186-94. https://doi.org/10.1093/ps/85.12.2186
  59. Gadde UD, Oh S, Lillehoj HS, Lillehoj EP. Antibiotic growth promoters virginiamycin and bacitracin methylene disalicylate alter the chicken intestinal metabolome. Sci Rep 2018;8:3592. https://doi.org/10.1038/s41598-018-22004-6
  60. Alwarawrah Y, Kiernan K, Maclver NJ. Changes in nutritional status impact immune cell metabolism and function. Front Immunol 2018;9:1055. https://doi.org/10.3389/fimmu.2018.01055
  61. Lee DN, Lyu SR, Wang RC, Weng CF, Chen BJ. Exhibit differential functions of various antibiotic growth promoters in broiler growth, immune response and gastrointestinal physiology. Int J Poult Sci 2011;10:216-20. https://doi.org/10.3923/ijps.2011.216.220
  62. Takahashi K, Miura Y, Mizymo T. Antibiotics feeding accelerate functional maturation of intestinal immune-related cells of male broiler chicks after hatch. J Poult Sci 2011;48:187. https://doi.org/10.2141/jpsa.010134
  63. Lee KW, Hong YH, Lee SH, et al. Effects of anticoccidial and antibiotic growth promoter programs on broiler performance and immune status. Res Vet Sci 2012;93:721-8. https://doi.org/10.1016/j.rvsc.2012.01.001
  64. Venegas DP, De la Fuente MK, Landskron G, et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol 2019;10:277. https://doi.org/10.3389/fimmu.2019.00277
  65. Baldwin S, Hughes RJ, Hao Van TT, Moore RJ, Stanley D. At-hatch administration of probiotic to chickens can introduce beneficial changes in gut microbiota. PLoS One 2018;13: e0194825. https://doi.org/10.1371/journal.pone.0194825
  66. Samanya M, Yamauchi KE. Histological alterations of intestinal villi in chickens fed dried Bacillus subtilis var. natto. Comp Biochem Physiol A Mol Integr Physiol 2002;133:95-104. https://doi.org/10.1016/S1095-6433(02)00121-6
  67. Kabir SML. The role of probiotics in the poultry industry. Int J Mol Sci 2009;10:3531-46. https://doi.org/10.3390/ijms10083531
  68. Shojadoost B, Kulkarni RR, Brisbin JT, Quinteiro-Filho W, Alkie TN, Sharif S. Interactions between lactobacilli and chicken macrophages induce antiviral responses against avian influenza virus. Res Vet Sci 2019;125:441-50. https://doi.org/10.1016/j.rvsc.2017.10.007
  69. Sornplang P, Leelavatcharamas V, Soikum C. Heterophil phagocytic activity stimulated by Lactobacillus salivarius L61 and L55 supplementation in broilers with Salmonella infection. Asian-Australas J Anim Sci 2015;28:1657-61. https://doi.org/10.5713/ajas.15.0359
  70. Beirao BCB, Ingberman M, Favaro C, et al. Effect of an Enterococcus faecium probiotic on specific IgA following live Salmonella enteritidis vaccination of layer chickens. Avian Pathol 2018;47:325-33. https://doi.org/10.1080/03079457.2018.1450487
  71. Balevi T, Ucan US, Cosun B, Kurtogu V, Cetingul IS. Effect of dietary probiotic on performance and humoral immune response in layer hens. Br Poult Sci 2001;42:456-61. https://doi.org/10.1080/00071660120073133
  72. Kawashima T, Ikari N, Kouchi T, et al. The molecular mechanism for activating IgA production by Pediococcus acidilactici K15 and the clinical impact in a randomized trial. Sci Rep 2018;8:5065. https://doi.org/10.1038/s41598-018-23404-4
  73. Khan S, Moore RJ, Stanley D, Chousalkar KK. The gut microbiota of laying hens and its manipulation with prebiotics and probiotics to enhance gut health and food safety. Appl Environ Microbiol 2020;86:e00600-20. https://doi.org/10.1128/AEM.00600-20
  74. Pourabedin M, Chen Q, Yang MM, Zhao X. Mannan- and xylooligosaccharides modulate caecal microbiota and expression of inflammatory-related cytokines and reduce caecal Salmonella enteritidis colonisation in young chickens. FEMS Microbiol Ecol 2017;93:fiw226. https://doi.org/10.1093/femsec/fiw226
  75. Slawinska A, Dunislawska A, Plowiec A, et al. Modulation of microbial communities and mucosal gene expression in chicken intestines after galactooligosaccharides delivery in ovo. PLoS One 2019;14:e0212318. https://doi.org/10.1371/journal.pone.0212318
  76. Madej JP, Bednarczyk M. Effect of in ovo-delivered prebiotics and synbiotics on the morphology and specific immune cell composition in the gut-associated lymphoid tissue. Poult Sci 2016;95:19-29. https://doi.org/10.3382/ps/pev291
  77. Janardhana V, Broadway MM, Bruce MP, et al. Prebiotics modulate immune responses in the gut-associated lymphoid tissue of chickens. J Nutr 2009;139:1404-9. https://doi.org/10.3945/jn.109.105007
  78. Richards PJ, Flaujac Lafontaine GM, Connerton PL, et al. Galacto-oligosaccharides modulate the juvenile gut microbiome and innate immunity to improve broiler chicken performance. mSystems 2020;5:e00827-19. https://doi.org/10.1128/mSystems.00827-19
  79. Kim GB, Seo YM, Kim CH, Paik IK. Effect of dietary prebiotic supplementation on the performance, intestinal microflora, and immune response of broilers. Poult Sci 2011;90: 75-82. https://doi.org/10.3382/ps.2010-00732
  80. Teng PY, Kim WK. Review: roles of prebiotics in intestinal ecosystem of broilers. Front Vet Sci 2018;5:245. https://doi.org/10.3389/fvets.2018.00245
  81. Jacob JP, Pescatore AJ. Barley β-glucan in poultry diets. Ann Transl Med 2014;2:20. https://doi.org/10.3978/j.issn.2305-5839.2014.01.02
  82. Guo Y, Ali RA, Qureshi MA. The influence of β-glucan on immune responses in broiler chicks. Immunopharmacol Immunotoxicol 2003;25:461-72. https://doi.org/10.1081/IPH-120024513
  83. Russo P, Lopez P, Capozzi V, et al. Beta-glucans improve growth, viability and colonization of probiotic microorganisms. Int J Mol Sci 2012;13:6026-39. https://doi.org/10.3390/ijms13056026
  84. Camilli G, Tabouret G, Quintin J. The complexity of fungal β-glucan in health and disease: effects on the mononuclear phagocyte system. Front Immunol 2018;9:673. https://doi.org/10.3389/fimmu.2018.00673
  85. Verwoolde MB, van den Biggelaar RHGA, van Baal J, Jansen CA, Lammers A. Training of primary chicken monocytes results in enhanced pro-inflammatory responses. Vet Sci 2020;7:115. https://doi.org/10.3390/vetsci7030115
  86. Li X, Wang L, Zhen Y, Li S, Xu Y. Chicken egg yolk antibodies (IgY) as non-antibiotic production enhancers for use in swine production: a review. J Anim Sci Biotechnol 2015;6:40. https://doi.org/10.1186/s40104-015-0038-8
  87. Gadde U, Rathinam T, Lillehoj HS. Passive immunization with hyperimmune egg-yolk IgY as prophylaxis and therapy for poultry diseases-a review. Anim Health Res Rev 2015;16: 163-76. https://doi.org/10.1017/S1466252315000195
  88. Lee SH, Lillehoj HS, Park DW, et al. Protective effect of hyperimmune egg yolk IgY antibodies against Eimeria tenella and Eimeria maxima infections. Vet Parasitol 2009;163:123-6. https://doi.org/10.1016/j.vetpar.2009.04.020
  89. Xu Y, Li X, Jin L, et al. Application of chicken egg yolk immunoglobulins in the control of terrestrial and aquatic animal diseases: a review. Biotechnol Adv 2011;29:860-8. https://doi.org/10.1016/j.biotechadv.2011.07.003
  90. Li XY, Jin LJ, McAllister TA, et al. Chitosan-alginate microcapsules for oral delivery of egg yolk immunoglobulin (IgY). J Agric Food Chem 2007;55:2911-7. https://doi.org/10.1021/jf062900q
  91. Xiao H, Shao F, Wu M, et al. The application of antimicrobial peptides as growth and health promoters for swine. J Anim Sci Biotechnol 2015;6:19. https://doi.org/10.1186/s40104-015-0018-z
  92. Hong Y, Lee J, Vu TH, Lee S, Lillehoj HS, Hong YH. Chicken avian β-defensin 8 modulates immune response via the mitogen-activated protein kinase signaling pathways in a chicken macrophage cell line. Poult Sci 2020;99:4174-82. https://doi.org/10.1016/j.psj.2020.05.027
  93. Suresh G, Das RK, Kaur Brar SK, et al. Alternatives to antibiotics in poultry feed: molecular perspectives. Crit Rev Microbiol 2018;44:318-35. https://doi.org/10.1080/1040841X.2017.1373062
  94. Jia Y, Si W, Hong Z, et al. Toll-like receptor 2-mediated induction of avian β-defensin 9 by Lactobacillus rhamnosus and its cellular components in chicken intestinal epithelial cells. Food Agric Immunol 2019;30:398-417. https://doi.org/10.1080/09540105.2019.1593325
  95. Shao Y, Wang Z, Tian X, Guo Y, Zhang H. Yeast β-D-glucans induced antimicrobial peptide expressions against Salmonella infection in broiler chickens. Int J Biol Macromol 2016;85: 573-84. https://doi.org/10.1016/j.ijbiomac.2016.01.031
  96. Lee IK, Bae S, Gu MJ, et al. H9N2-specific IgG and CD4+ CD25+ T cells in broilers fed a diet supplemented with organic acids. Poult Sci 2017;96:1063-70. https://doi.org/10.3382/ps/pew382
  97. Kannaki TR, Priyanka E, Reddy MR. Co-administration of toll-like receptor (TLR)-3 and 4 ligands augments immune response to Newcastle disease virus (NDV) vaccine in chicken. Vet Res Commun 2019;43:225-30. https://doi.org/10.1007/s11259-019-09763-x
  98. Yitbarek A, Astill J, Hodgins DC, Parkinson J, Nagy E, Sharif S. Commensal gut microbiota can modulate adaptive immune responses in chickens vaccinated with whole inactivated avian influenza virus subtype H9N2. Vaccine 2019;37:6640-7. https://doi.org/10.1016/j.vaccine.2019.09.046
  99. Forte C, Moscati L, Acuti G, et al. Effects of dietary Lactobacillus acidophilus and Bacillus subtilis on laying performance, egg quality, blood biochemistry and immune response of organic laying hens. J Anim Physiol Anim Nutr 2016;100: 977-87. https://doi.org/10.1111/jpn.12408
  100. Huang HB, Jiang YL, Zhou FY, et al. A potential vaccine candidate towards chicken coccidiosis mediated by recombinant Lactobacillus plantarum with surface displayed EtMIC2 protein. Exp Parasitol 2020;215:107901. https://doi.org/10.1016/j.exppara.2020.107901
  101. Zhen W, Shao Y, Gong X, et al. Effect of dietary Bacillus coagulans supplementation on growth performance and immune responses of broiler chickens challenged by Salmonella enteritidis. Poult Sci 2018;97:2654-66. https://doi.org/10.3382/ps/pey119
  102. Wang X, Farnell YZ, Peebles ED, Kiess AS, Wamsley KGS, Zhai W. Effects of prebiotics, probiotics, and their combination on growth performance, small intestine morphology, and resident Lactobacillus of male broilers. Poult Sci 2016; 95:1332-40. https://doi.org/10.3382/ps/pew030
  103. Shang Y, Kumar S, Thippareddi H, Kim WK. Effect of dietary fructooligosaccharide (FOS) supplementation on ileal microbiota in broiler chickens. Poult Sci 2018;97:3622-34. https://doi.org/10.3382/ps/pey131
  104. Mesa D, Lammel DR, Balsanelli E, et al. Cecal microbiota in broilers fed with prebiotics. Front Genet 2017;8:153. https://doi.org/10.3389/fgene.2017.00153
  105. Ding XM, Li DD, Bai SP, et al. Effect of dietary xylooligosaccharides on intestinal characteristics, gut microbiota, cecal short-chain fatty acids, and plasma immune parameters of laying hens. Poult Sci 2018;97:874-81. https://doi.org/10.3382/ps/pex372
  106. Stefaniak T, Madej JP, Graczyk S, et al. Selected prebiotics and synbiotics administered in ovo can modify innate immunity in chicken broilers. BMC Vet Res 2019;15:105. https://doi.org/10.1186/s12917-019-1850-8
  107. Stefaniak T, Madej JP, Graczyk S, et al. Impact of prebiotics and synbiotics administered in ovo on the immune response against experimental antigens in chicken broilers. Animals 2020;10:643. https://doi.org/10.3390/ani10040643
  108. Shanmugasundaram R, Sifri M, Selvaraj RK. Effect of yeast cell product supplementation on broiler cecal microflora species and immune responses during an experimental coccidial infection. Poult Sci 2013;92:1195-201. https://doi.org/10.3382/ps.2012-02991

Cited by

  1. Glancing at the major issues of the Animal Bioscience Forum 2020 vol.34, pp.5, 2021, https://doi.org/10.5713/ab.2021.0002ed