DOI QR코드

DOI QR Code

X-RAY PROPERTIES OF THE PULSAR PSR J0205+6449 IN 3C 58

  • Kim, Minjun (Department of Astronomy and Space Science, Chungbuk National University) ;
  • An, Hongjun (Department of Astronomy and Space Science, Chungbuk National University)
  • Received : 2020.08.10
  • Accepted : 2020.12.24
  • Published : 2021.02.28

Abstract

We report X-ray timing and spectral properties of the pulsar PSR J0205+6449 measured using NuSTAR and Chandra observatories. We measure the pulsar's rotation frequency ν = 15.20102357(9) s-1 and its derivative $\dot{\nu}=-4.5(1){\times}10^{-11}\;s^{-2}$ during the observation period, and model the 2-30 keV on-pulse spectrum of the pulsar with a power law having a photon index Γpsr = 1.07 ± 0.16 and a 2-30 keV flux F2-30 keV = 7.3±0.6 × 10-13 erg cm-2 s-1. The Chandra 0.5-10 keV data are analyzed for an investigation of the pulsar's thermal emission properties. We use thermal and non-thermal emission models to fit the Chandra spectra and infer the surface temperature T∞ and luminosity Lth of the neutron star to be T∞ = 0.5 - 0.8 MK and Lth = 1 - 5 × 1032 erg s-1. This agrees with previous results which indicated that PSR J0205+6449 has a low surface temperature and luminosity for its age of 800-5600 yrs.

Keywords

References

  1. Abdo, A. A., Ajello, M., Allafort, A., et al. 2013, The Second Fermi Large Area Telescope Catalog of Gamma-Ray Pulsars, ApJS, 208, 17 https://doi.org/10.1088/0067-0049/208/2/17
  2. An, H., Madsen, K. K., Westergaard, N. J. et al., 2014, Inflight PSF Calibration of the NuSTAR Hard X-ray Optics, SPIE, 9144, 91441Q
  3. An, H., Cumming, A., & Kaspi, V. M. 2018, Flux Relaxation after Two Outbursts of the Magnetar SGR 1627-41 and Possible Hard X-Ray Emission, ApJ, 859, 16 https://doi.org/10.3847/1538-4357/aabafb
  4. An, H. 2019, NuSTAR Hard X-Ray Studies of the Pulsar Wind Nebula 3C 58, ApJ, 876, 150 https://doi.org/10.3847/1538-4357/ab18a6
  5. Bietenholz, M. F. 2006, Radio Images of 3C 58: Expansion and Motion of Its Wisp, ApJ, 645, 1180 https://doi.org/10.1086/504584
  6. Bietenholz, M. F., Kondratiev, V., Ransom, S., et al. 2013, The Proper Motion of PSR J0205+6449 in 3C 58, MNRAS, 431, 2590 https://doi.org/10.1093/mnras/stt353
  7. Brown, E. F., & Cumming, A. 2009, Mapping Crustal Heating with the Cooling Light Curves of Quasi-Persistent Transients, ApJ, 698, 1020 https://doi.org/10.1088/0004-637X/698/2/1020
  8. Cackett, E. M., Brown, E. F., Cumming, A., et al. 2013, A Change in the Quiescent X-Ray Spectrum of the Neutron Star Low-mass X-Ray Binary MXB 1659-29, ApJ, 774, 131 https://doi.org/10.1088/0004-637X/774/2/131
  9. Chamel, N., & Haensel, P. 2008, Physics of Neutron Star Crusts, LRR, 11, 10
  10. Courvoisier, T. J.-L., Beckmann, V., Bourban, G., et al. 2003, Simultaneous Observations of the Quasar 3C 273 with INTEGRAL and RXTE, A&A, 411, L343 https://doi.org/10.1051/0004-6361:20031206
  11. Davis, J. E. 2001, Event Pileup in Charge-coupled Devices, ApJ, 562, 575 https://doi.org/10.1086/323488
  12. Demorest, P. B., Pennucci, T., Ransom, S. M., et al. 2010, A Two-solar-mass Neutron Star Measured Using Shapiro Delay, Nature, 467, 1081 https://doi.org/10.1038/nature09466
  13. de Jager, O. C., Raubenheimer, B. C., & Swanepoel, J. W. H. 1989, A Powerful Test for Weak Periodic Signals with Unknown Light Curve Shape in Sparse Data, A&A, 221, 190
  14. Fesen, R., Rudie, G., Hurford, A., & Soto, A. 2008, Optical Imaging and Spectroscopy of the Galactic Supernova Remnant 3C 58 (G130.7+3.1), ApJS, 174, 379 https://doi.org/10.1086/522781
  15. Fruscione, A., McDowell, J. C., Allen, G. E., et al. 2006, CIAO: Chandra's Data Analysis System, SPIE, 6270, 62701V
  16. Harding, A. K. 2013, The Neutron Star Zoo, Frontiers Phys., 8, 679 https://doi.org/10.1007/s11467-013-0285-0
  17. Harrison, F. A., Craig, W. W., Christensen, F. E., et al. 2013, The Nuclear Spectroscopic Telescope Array (NuSTAR) High-energy X-Ray Mission, ApJ, 770, 103 https://doi.org/10.1088/0004-637X/770/2/103
  18. Ho, W. C. G., Potekhin, A. Y., & Chabrier, G. 2008, Model X-Ray Spectra of Magnetic Neutron Stars with Hydrogen Atmospheres, ApJS, 178, 102 https://doi.org/10.1086/589238
  19. Kim, M., & An, H. 2019, Measuring Timing Properties of PSR B0540-069, JKAS, 52, 41
  20. Kim, M., & An, H. 2020, Characterizing X-Ray Properties of the Gamma-Ray Pulsar PSR J1418-6058 in the Rabbit Pulsar Wind Nebula, ApJ, 892, 5 https://doi.org/10.3847/1538-4357/ab76c1
  21. Kim, S., Park, J., & An, H. 2019, Investigating the Pulsar Wind Nebula 3C 58 Using Emission Models, JKAS, 52, 173
  22. Kothes, R. 2013, Distance and Age of the Pulsar Wind Nebula 3C 58, A&A, 560, A18 https://doi.org/10.1051/0004-6361/201219839
  23. Kuiper, L., Hermsen, W., Urama, J. O., et al. 2010, Hard X-ray Timing and Spectral Characteristics of the Energetic Pulsar PSR J0205+6449 in Supernova Remnant 3C 58. An RXTE PCA/HEXTE and XMM-Newton View on the 0.5-250 keV Band, A&A, 515, A34 https://doi.org/10.1051/0004-6361/200913851
  24. Kuiper, L., & Hermsen, W. 2015, The Soft γ-ray Pulsar Population: A High-energy Overview, MNRAS, 449, 3827 https://doi.org/10.1093/mnras/stv426
  25. Lattimer, J. M. 2012, The Nuclear Equation of State and Neutron Star Masses, Annu. Rev. Nucl. Part. Sci., 62, 485 https://doi.org/10.1146/annurev-nucl-102711-095018
  26. Livingstone, M. A., Ransom, S. M., Camilo, F., et al. 2009, X-ray and Radio Timing of the Pulsar in 3C 58, ApJ, 706, 1163 https://doi.org/10.1088/0004-637X/706/2/1163
  27. Loredo, T. J. 1992, Promise of Bayesian Inference for Astrophysics. In: Feigelson E. D., Babu G. J. (eds) Statistical Challenges in Modern Astronomy (New York: Springer), 275
  28. Madsen, K. K., Harrison, F. A., Markwardt, C. B., et al. 2015, Calibration of the NuSTAR High-energy Focusing X-ray Telescope, ApJS, 220, 8 https://doi.org/10.1088/0067-0049/220/1/8
  29. Miller, M. C., Lamb, F. K., Dittmann, A. J., et al. 2019, PSR J0030+0451 Mass and Radius from NICER Data and Implications for the Properties of Neutron Star Matter, ApJL, 887, L24 https://doi.org/10.3847/2041-8213/ab50c5
  30. Mori, K., & Ho, W. C. G. 2007, Modelling Mid-Z Element Atmospheres for Strongly Magnetized Neutron Stars, MN-RAS, 377, 905 https://doi.org/10.1111/j.1365-2966.2007.11663.x
  31. Ozel, F., & Freire, P. 2016, Masses, Radii, and the Equation of State of Neutron Stars, ARA&A, 54, 401 https://doi.org/10.1146/annurev-astro-081915-023322
  32. Pavlov, G. G., Shibanov, Y. A., Zavlin, V. E., & Meyer, R. D. 1995, Neutron Star Atmospheres, NATO Adv. Sci. Inst. C, 450, 71
  33. Potekhin, A. Y., Zyuzin, D. A., Yakovlev, D. G., et al. 2020, Thermal Luminosities of Cooling Neutron Stars, MNRAS, 496, 5052 https://doi.org/10.1093/mnras/staa1871
  34. Reis, R. C., Reynolds, M. T., Miller, J. M., & Walton, D. J. 2014, Reflection from the Strong Gravity Regime in a Lensed Quasar at Redshift z = 0.658, Nature, 507, 207 https://doi.org/10.1038/nature13031
  35. Roberts, D. A., Goss, W. M., Kalberla, P. M. W., et al. 1993, High Resolution H i Observations of 3C 58, A&A, 274, 427
  36. Romani, R. W. 1996, Gamma-Ray Pulsars: Radiation Processes in the Outer Magnetosphere, ApJ, 470, 469 https://doi.org/10.1086/177878
  37. Shapiro, S. L., & Teukolsky, S. A. 1986, Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects (Hoboken, NJ: John Wiley & Sons)
  38. Slane, P., Helfand, D. J., van der Swaluw, E., & Murray, S. S. 2004, New Constraints on the Structure and Evolution of the Pulsar Wind Nebula 3C 58, ApJ, 616, 403 https://doi.org/10.1086/424814
  39. Stephenson, F. R. 1971, Suspected Supernova in A.D. 1181, QJRAS, 12,
  40. Tsujimoto, M., Guainazzi, M., Plucinsky, P. P., et al. 2011, Cross-calibration of the X-ray Instruments Onboard the Chandra, INTEGRAL, RXTE, Suzaku, Swift, and XMMNewton Observatories Using G21.5-0.9, A&A, 525, A25 https://doi.org/10.1051/0004-6361/201015597
  41. Vigano, D., Rea, N., Pons, J. A., et al. 2013, Unifying the Observational Diversity of Isolated Neutron Stars via Magneto-thermal Evolution Models, MNRAS, 434, 123 https://doi.org/10.1093/mnras/stt1008
  42. Weisskopf, M. C., Guainazzi, M., Jahoda, K., et al. 2010, On Calibrations Using the Crab Nebula and Models of the Nebular X-Ray Emission, ApJ, 713, 912 https://doi.org/10.1088/0004-637X/713/2/912
  43. Yakovlev, D. G., & Pethick, C. J. 2004, Neutron Star Cooling, ARA&A, 42, 169 https://doi.org/10.1146/annurev.astro.42.053102.134013