References
- ACI 318 (2019), Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary (ACI 318R-19), American Concrete Institute, Farmington Hills, MI, U.S.A.
- Andre, H. (1987), "Toronto/Kajima study on scale effects in reinforced concrete elements", M.A.Sc. Thesis, The University of Toronto, Toronto, Canada.
- Badawy, H.E.I., McMullen, A.E. and Jordaan, I.J. (1977), "Experimental investigation of the collapse of reinforced concrete curved beams", Mag. Concrete Res., 29(99), 59-69. https://doi.org/10.1680/macr.1977.29.99.59.
- Bentz, E.C., Vecchio, F.J. and Collins, M.P. (2006), "Simplified modified compression field theory for calculating shear strength of reinforced concrete elements", J. Am. Concrete Inst., 103, 614-624. https://doi.org/10.14359/16438.
- Bræstrup, M.W. (1974), "Plastic analysis of shear in reinforced concrete", Mag. Concrete Res., 26, 221-228. https://doi.org/10.1680/macr.1974.26.89.221.
- Bresler, B. and Scordelis, A.C. (1963), "Shear strength of reinforced concrete beams", ACI J. Proc., 60(1), 51-72. https://doi.org/10.14359/7842.
- Chiu, H.J., Fang, I.K., Young, W.T. and Shiau, J.K. (2007), "Behavior of reinforced concrete beams with minimum torsional reinforcement", Eng. Struct., 29(9), 2193-2205. https://doi.org/10.1016/j.engstruct.2006.11.004.
- Choi, C.K. and Cheung, S.H. (1994), "A simplified model for predicting the shear response of reinforced concrete membranes", Thin Wall. Struct., 19(1), 37-60. https://doi.org/10.1016/0263-8231(94)90004-3.
- Clark, A. (1951), "Diagonal tension in reinforced concrete beams", ACI J. Proc., 48(10), 145-156. https://doi.org/10.14359/11876.
- CSA-A23.3 (2014), Design of Concrete Structures (A23.3-14), Canadian Standards Association, Canada.
- Fang, I.K. and Shiau, J.K. (2004), "Torsional behavior of normal-and high-strength concrete beams", ACI Struct., 101(3), 304-313. https://doi.org/10.14359/13090.
- Fisher, G.P. and Zia, P. (1964), "Review of code requirements for torsion design", J. Am. Concrete Inst., 61(1), 1-44. https://doi.org/10.14359/7764.
- Fouad, E., Ghoneim, M., Issa, M. and Shaheen, H. (2000), "Combined shear and torsion in reinforced normal and highstrength concrete beams (1): Experimental study", J. Eng. Appl. Sci., 47(6), 1059-1078.
- Gupta, P. (1993), "Behavior of reinforced concrete members subjected to shear and compression", M.A.Sc. Thesis, The University of Toronto, Toronto, Canada.
- Haddadin, M.J., Hong, S.T. and Mattock, A.H. (1971), "Stirrups effectiveness in reinforced concrete beams with axial force", ASCE J. Struct. Div., 97(9), 2277-2297. https://doi.org/10.1061/JSDEAG.0002996
- Hsu, T.T.C. (1968), "Torsion of structural concrete-behavior of reinforced concrete rectangular members", Torsion in Struct. Concrete, SP-18, 261-306.
- Hsu, T.T.C. and Zhang, L. (1997), "Nonlinear analysis of membrane elements by fixed angle softened-truss model", ACI Struct. J., 94, 483-492. https://doi.org/10.14359/498.
- Hsu, T.T.C. and Zhang, L. (1998), "Behavior and analysis of 100 MPa concrete membrane elements", ASCE J. Struct. Div., 124, 24-34. https://doi.org/10.1061/(asce)0733-9445(1998)124:1(24).
- Ibrahim, M.S., Gebreyouhannes, E., Muhdin, A. and Gebre, A. (2020), "Effect of concrete cover on the pure torsional behavior of reinforced concrete beams", Eng. Struct., 216, 110790. https://doi.org/10.1016/j.engstruct.2020.110790.
- Johnson, M.K. and Ramirez, J.A. (1989), "Minimum shear reinforcement in beams with higher-strength concrete", ACI Struct. J., 86(4), 367-382. https://doi.org/10.14359/2896.
- Ju, H., Lee, D., Kim, J.R. and Kim, K.S. (2020). "Maximum torsional reinforcement ratio of reinforced concrete beams", Struct., 23, 481-493. https://doi.org/10.1016/j.istruc.2019.09.007.
- Khalifa, J. (1986), "Limit analysis of reinforced concrete shell elements", Ph.D. Thesis, University of Toronto, Toronto, Canada.
- Kirschner, U. (1986), "Investigating the behavior of reinforced concrete shell elements", Ph.D. Thesis, The University of Toronto, Toronto, Canada.
- Klus, J. (1968), "Ultimate strength of reinforced concrete beams in combined torsion and shear", ACI J. Proc., 65(3), 210-216. https://doi.org/10.14359/7468.
- Koutchoukali, N.E. and Belarbi, A. (2001), "Torsion of high-strength reinforced concrete beams and minimum reinforcement requirements", ACI Struct. J., 98(4), 462-469. https://doi.org/10.14359/10289.
- Lee, J.Y., Kim, K.H., Lee, S.H., Kim, C. and Kim, M.H. (2018), "Maximum torsional reinforcement of reinforced concrete beams subjected to pure torsion", ACI Struct. J., 15(3), 749-760. https://doi.org/10.14359/51701108.
- Leonhardt, F. and Schelling, G. (1974), "Torsionsversuche an stahl betonbalken", Bulletin no. 239, Deutscher Ausschuss fur Stahlbeton, Berlin.
- Lopes, S.M.R. and Bernardo, L.F A. (2014), "Cracking and failure mode in HSC hollow beams under torsion", Const. Build. Mater., 51, 163-178. https://doi.org/10.1016/j.conbuildmat.2013.10.062.
- Marti, P. and Meyboom, J. (1992), "Response of prestressed concrete elements to in-plane shear forces", ACI Struct. J., 89, 503-513. https://doi.org/10.14359/2956.
- McMullen, A.E. and Rangan, B.V. (1978), "Pure torsion in rectangular sections-A re-examination", ACI J. Proc., 75(10), 511-519. https://doi.org/10.14359/10963.
- McMullen, A.E. and Warwaruk, J. (1967), "The torsional strength of rectangular reinforced beams subjected to combined loading", Report No. 2, Civil Engineering Department, University of Alberta, Alberta, Canada.
- McMullen, A.E. and Warwaruk, J. (1970), "Concrete beams in bending, torsion and shear", Proc., ASCE, 96, 885-903.
- Mitchell, D. and Collins, M.P. (1974a), "Behavior of structural concrete beams in pure torsion", Publication No. 74-06, Department of Civil Engineering, University of Toronto, Toronto, Canada.
- Mitchell, D. and Collins, M.P. (1974b), "Diagonal compression field theory-A rational model for structural concrete in pure torsion", J. Am. Concrete Inst., 71(8), 396-408. https://doi.org/10.14359/7103.
- Mphonde, A.G. and Frantz, G.C. (1984), "Shear strength of highstrength reinforced concrete beams", Publication No. CE 84-157, University of Connecticut, Connecticut, U.S.A.
- Olalusi, O.B. and Viljoen, C. (2019), "Assessment of simplified and advanced models for shear resistance prediction of stirrup-reinforced concrete beams", Eng. Struct., 186, 96-109. https://doi.org/10.1016/j.engstruct.2019.01.130.
- Palaskas, M., Attiogbe, E. and Darwin, D. (1981), "Shear strength of lightly reinforced T-beams", ACI J. Proc., 78(6), 447-455. https://doi.org/10.14359/10528.
- Pang, X.B. and Hsu, T.T.C. (1995), "Behavior of reinforced concrete membranes in shear", ACI Struct. J., 92, 665-679. https://doi.org/10.14359/9661.
- Peng, X.N. and Wong, Y.L. (2011a), "Behavior of reinforced concrete walls subjected to monotonic pure torsion-An experimental study", Eng. Struct., 33(9), 2495-2508. https://doi.org/10.1016/j.engstruct.2011.04.022.
- Peng, X.N. and Wong, Y.L. (2011b), "Experimental study on reinforced concrete walls under combined flexure, shear and torsion", Mag. Concrete Res., 63(6), 459-471. https://doi.org/10.1680/macr.10.00133.
- Placas, A. and Regan, P.E. (1971), "Shear failure of reinforced concrete beams", ACI J. Proc., 68(10), 763-773. https://doi.org/10.14359/15237.
- Porasz, A. (1989), "An investigation of the stress-strain characteristics of high strength in shear", M.A.Sc. Thesis, Dept. of Civil Engineering, The University of Toronto, Toronto, Canada.
- Rahal, K.N. (1993), "Behaviour of reinforced concrete beams subjected to combined shear and torsion", Ph.D. Thesis, The University of Toronto, Toronto, Canada.
- Rahal, K.N. (2000a), "Shear strength of reinforced concrete: Part II-beams subjected to shear, bending moment and axial loads", ACI Struct. J., 97(2), 219-224. https://doi.org/10.14359/850.
- Rahal, K.N. (2000b), "Shear strength of reinforced concrete: Part I-membrane elements subjected to pure shear", ACI Struct. J., 97(1), 86-93. https://doi.org/10.14359/837.
- Rahal, K.N. (2001), "Analysis and design for torsion in reinforced and prestressed concrete beams", Struct. Eng. Mech., 11(6), 575-590. https://doi.org/10.12989/sem.2001.11.6.575.
- Rahal, K.N. (2002), "Membrane elements subjected to in-plane shearing and normal stresses", ASCE J. Struct. Div., 128, 1064-1072. https://doi.org/10.1061/(asce)0733-9445(2002)128:8(1064).
- Rahal, K.N. (2008), "Simplified design and capacity calculations of shear strength in reinforced concrete membrane elements", Eng. Struct., 30, 2782-2791. https://doi.org/10.1016/j.engstruct.2008.03.002.
- Rahal, K.N. (2010), "Shear-transfer strength of reinforced concrete", ACI Struct. J., 107(4), 419-426. https://doi.org/10.14359/51663814.
- Rahal, K.N. (2013), "Torsional strength of normal and highstrength reinforced concrete beams", Eng. Struct., 56, 2206-2216. https://doi.org/10.1016/j.engstruct.2013.09.005.
- Rahal, K.N. and Collins, M.P. (1995a), "Analysis of sections subjected to combined shear and torsion-A theoretical model", ACI Struct. J., 92(4), 459-469. https://doi.org/10.14359/995.
- Rahal, K.N. and Collins, M.P. (1995b), "Effect of thickness of concrete cover on shear and torsion interaction-An experimental investigation", ACI Struct. J., 92(3), 334-342. https://doi.org/10.14359/9657.
- Rahal, K.N. and Collins, M.P. (1996), "Simple model for predicting the torsional strength of reinforced and prestressed concrete sections", ACI Struct. J., 93(6), 658-866. https://doi.org/10.14359/512.
- Rahal, K.N. and Collins, M.P. (1999), "Background of the 1994 CSA-A23.3 General Method of shear design", Can. J. Civil Eng., 26(6), 827-839. https://doi.org/10.1139/l99-050.
- Rangan, B.V. (1991), "Web crushing of reinforced and prestressed concrete beams", ACI Struct. J., 88(1) 12-16. https://doi.org/10.14359/3050.
- Rasmussen, L.J. and Baker, G. (1995), "Torsion in reinforced normal and high-strength concrete beams-part 1: experimental test series", ACI Struct. J., 92(1), 56-62. https://doi.org/10.14359/1476.
- Roller, J.J. and Russell, H.G. (1990), "Shear strength of high-strength concrete beams with web reinforcement", ACI Struct. J., 87(2), 191-198. https://doi.org/10.14359/2682.
- Taborda, C., Bernardo, L.F.A. and Gama, J.M.R. (2018), "Effective torsional strength of axially restricted RC beams", Struct. Eng. Mech., 67(5), 465-479. http://dx.doi.org/10.12989/sem.2018.67.5.465.
- Vecchio, F.J. and Chan, C.C.L. (1990), "Reinforced concrete membrane elements with perforations", ASCE J. Struct. Eng., 116, 72-78. https://doi.org/10.1061/(asce)0733-9445(1990)116:9(2344).
- Vecchio, F.J. and Collins, M.P. (1986), "Modified compression field theory for reinforced concrete elements subjected to shear", J. Am. Concrete Inst., 83, 219-231. https://doi.org/10.14359/10416.
- Vecchio, F.J., Collins, M.P. and Aspiotis, J. (1994), "High-strength concrete elements subjected to shear", ACI Struct. J., 91, 423-433. https://doi.org/10.14359/4149.
- Wang, Q., Qiu, W. and Zhang, Z. (2015), "Torsion strength of single-box multi-cell concrete box girder subjected to combined action of shear and torsion", Struct. Eng. Mech., 55(5), 953-964. https://doi.org/10.12989/sem.2015.55.5.953.
- Xie, L., Bentz, E.C. and Collins, M.P. (2011), "Influence of axial stress on shear response of reinforced concrete elements", ACI Struct. J., 108(6), 745-754. https://doi.org/10.14359/51683373.
- Yamaguchi, T., Koike, K., Naganuma, K. and Takeda, T. (1988), "Pure shear loading tests on reinforced concrete panels part I: outlines of tests", Proceedings, Japanese Architectural Association, Japan.
- You, Y.M. and Belarbi, A. (2011), "Thickness of shear flow zone in a circular column under pure torsion", Eng. Struct., 33, 2435-2447. https://doi.org/10.1016/j.engstruct.2011.04.016.