DOI QR코드

DOI QR Code

A new constitutive model to predict effective elastic properties of plain weave fabric composites

  • Mazaheri, Amir H. (School of Mechanical Engineering, Iran University of Science and Technology) ;
  • Taheri-behrooz, Fathollah (School of Mechanical Engineering, Iran University of Science and Technology)
  • 투고 : 2019.08.05
  • 심사 : 2021.01.05
  • 발행 : 2021.03.10

초록

In this study, a new constitutive model has been developed to predict the elastic behavior of plain weave textile composites, using the finite element (FE) method. The geometric conditions and basic assumptions of this model are based on the basics of a continuum theory developed for the plane curved composites. In this model, the mechanical properties of the weave region and pure matrix region is calculated separately and then imported for the FE analysis. This new constitutive model is used to implement the mechanical properties of weave region in the representative volume element (RVE). The constitutive relations are implemented as user-material subroutine code (UMAT) in ABAQUS® FE software. The results of FE analysis have been compared with experimental results and other data available in the literature. These comparisons confirmed the capability of the presented model for the prediction of effective elastic properties of plain weave fabric composites.

키워드

참고문헌

  1. Akbarov, S.D. and Guz, A.N. (2000), Plane-curved Composites, in Mechanics of Curved Composites, Springer Science & Business Media.
  2. Asadi, A. and Raghavan, J. (2015), "Model for evolution of quasistatic transverse cracking in multiple plies of multidirectional polymer composite laminates", Compos. Struct., 132, 665-679. https://doi.org/10.1016/j.compstruct.2015.06.005.
  3. Bacarreza, O., Aliabadi, M.H. and Apicella, A. (2012), "Multiscale failure analysis of plain-woven composites", J. Strain Anal. Eng. Des., 47(6), 379-388. https://doi.org/10.1177/0309324712448301.
  4. Bacarreza, O., Wen, P. and. Aliabadi, M.H. (2015), Micromechanical Modelling of Textile Composites, Woven Composites, Imperial College Press, London, England.
  5. Bulut, O., Kadioglu, N. and Ataoglu, S. (2016), "Absolute effective Elastic constants of composite materials", Struct. Eng. Mech., 57(5), 897-920. https://doi.org/10.12989/sem.2016.57.5.897.
  6. Carvelli, V. and Poggi, C. (2001), "A homogenization procedure for the numerical analysis of woven fabric composites", Compos. Part A Appl. Sci. Manuf., 32(10), 1425-1432. https://doi.org/10.1016/S1359-835X(01)00041-0
  7. Carvelli, V. and Taliercio, A. (1999), "A micromechanical model for the analysis of unidirectional elastoplastic composites subjected to 3D stresses", Mech. Res. Commun., 26(5), 547-553. https://doi.org/10.1016/S0093-6413(99)00061-0
  8. Chen, J., Wei, J. and Xu, Y. (2006), "Fuzzy reliability analysis of laminated composites", Struct. Eng. Mech., 22(6), 665-684. https://doi.org/10.12989/sem.2006.22.6.665.
  9. Chou, T.W. and Ishikawa, T. (1983), "One-dimensional micromechanical analysis of woven fabric composites", AIAA J., 21(12), 1714-1721. https://doi.org/10.2514/3.8314.
  10. Department of Defense (2002), MIL-HDBK-17-2F Polymer Matrix Composites Materials Properties, Composite Materials Handbook, USA.
  11. Doitrand, A., Fagiano, C., Chiaruttini, V., Leroy, F.H., Mavel, A. and Hirsekorn, M. (2015), "Experimental characterization and numerical modeling of damage at the mesoscopic scale of woven polymer matrix composites under quasi-static tensile loading", Compos. Sci. Technol., 119, 1-11. https://dx.doi.org/10.1016/j.compscitech.2015.09.015.
  12. Hashin, Z. (1983), "Analysis of composite materials-a survey", J. Appl. Mech., 50(3), 481-505. https://doi.org/10.1115/1.3167081
  13. Hashin, Z. (1972), "Theory of fiber reinforced materials", NASACR-1974, National Aeronautics and Space Administration, USA.
  14. Ishikawa, T. and Chou, T.W. (1982), "Stiffness and strength behaviour of woven fabric composites", J. Mater. Sci., 17(11), 3211-3220. https://doi.org/10.1007/BF01203485
  15. Ishikawa, T. (1981), "Anti-symmetric elastic properties of composite plates of satin weave cloth", Fibre Sci. Technol., 15(2), 127-145. https://doi.org/10.1016/0015-0568(81)90066-X
  16. Ishikawa, T. and Chou, T.W. (1982), "Elastic behavior of woven hybrid composites", J. Compos. Mater., 16(1), 2-19. https://doi.org/10.1177/002199838201600101
  17. Ishikawa, T., Matsushima, M., Hayashi, Y. and Chou, T.W. (1985), "Experimental confirmation of thetheory of elastic moduli of fabric composites", J. Compos. Mater., 19(5), 443-458. https://doi.org/10.1177/002199838501900504
  18. Jiang, Y., Tabiei, A. and Simitses, G.J. (2000), "A novel micromechanics-based approach to the derivation of constitutive equations for local/global analysis of a plain-weave fabric composite", Compos. Sci. Technol., 60(9), 1825-1833. https://doi.org/10.1016/S0266-3538(00)00064-6.
  19. Karayaka, M. and Kurath, P. (1994), "Deformation and failure behavior of woven composite laminates", J. Eng. Mater. Technol., 116(2), 222-232. https://doi.org/10.1115/1.2904277.
  20. Karkkainen, R.L. and Sankar, B.V. (2006), "A direct micromechanics method for analysis of failure initiation of plain weave textile composites", Compos. Sci. Technol., 66(1), 137-150. https://doi.org/10.1016/j.compscitech.2005.05.018.
  21. Karkkainen, R.L., Sankar, B.V. and Tzeng J.T. (2007), "Strength prediction of multi-layer plain weave textile composites using the direct micromechanics method", Compos. Part B Eng., 38(7-8), 924-932. https://doi.org/10.1016/j.compositesb.2006.07.021.
  22. Naik, N.K. and Ganesh, V.K. (1992), "Prediction of on-axes elastic properties of plain weave fabric composites", Compos. Sci. Technol., 45(2), 135-152. https://doi.org/10.1016/0266-3538(92)90036-3.
  23. Naik, N.K. and Ganesh, V.K. (1995), "An analytical method for plain weave fabric composites", Compos., 26(4), 281-289. https://doi.org/10.1016/0010-4361(95)93671-6.
  24. Naik, N.K. and Shembekar, P.S. (1992a), "Elastic behavior of woven fabric composites: I-lamina analysis", J. Compos. Mater., 26(15), 2196-2225. https://doi.org/10.1177/002199839202601502.
  25. Naik, N.K. and Shembekar, P.S. (1992b), "Elastic behavior of woven fabric composites: III-laminate design", J. Compos. Mater., 26(17), 2522-2541. https://doi.org/10.1177/002199839202601704
  26. Naik, N.K. and Sridevi, E. (2002), "An analytical method for thermoelastic analysis of 3D orthogonal interlock woven composites", J. Reinf. Plast. Compos., 21(13), 1149-1191. https://doi.org/10.1177/073168402128987716.
  27. Peters, S.T. (1998), Handbook of Composites, Springer, Boston, MA, USA.
  28. Shembekar, P.S. and Naik, N.K. (1992), "Elastic behavior of woven fabric composites: II-laminate analysis", J. Compos. Mater., 26(15), 2226-2246. https://doi.org/10.1177/002199839202601503.
  29. Shen, C. and Han, X. (2017), "Meso-scale model for calculating the stiffness of filament wound composites considering fiber undulations", Struct. Eng. Mech., 62(3), 273-279. https://doi.org/10.12989/sem.2017.62.3.273.
  30. Shokrieh, M.M., Ghasemi, R. and Mosalmani, R. (2017), "A general micromechanical model to predict elastic and strength properties of balanced plain weave fabric composites", J. Compos. Mater., 51(20), 2863-2878. https://doi.org/10.1177/0021998317716530.
  31. Song, J., Wen, W., Cui, H., Zhang, H. and Xu, Y. (2016a), "Finite element analysis of 2.5D woven composites, part I: microstructure and 3D finite element model", Appl. Compos. Mater., 23(1), 29-44. https://doi.org/10.1007/s10443-015-9447-2.
  32. Song, J., Wen, W., Cui, H., Zhang, H. and Xu, Y. (2016b), "Finite element analysis of 2.5D woven composites, part II: damage behavior simulation and strength prediction", Appl. Compos. Mater., 23(1), 45-69. https://doi.org/10.1007/s10443-015-9449-0.
  33. Tanov, R. and Tabiei, A. (2001), "Computationally efficient micromechanical models for woven fabric composite elastic moduli", J. Appl. Mech., 68(4), 553-560. https://doi.org/10.1115/1.1357516.
  34. Wang, L. Wu, J., Chen, C., Zheng, C., Li, B., Joshi, S.C. and Zhou, K. (2017), "Progressive failure analysis of 2D Woven composites at the meso-micro scale", Comput. Struct., 178, 395-405. https://dx.doi.org/10.1016/j.compstruct.2017.07.023.
  35. Whitcomb, J.D. (1991), "Three-dimensional stress analysis of plain weave composites", NASA-TM101672, National Aeronautics and Space Administration, USA.
  36. Xu, L., Huang, Y., Zhao, C. and Ha, S.K. (2018), "Progressive failure prediction of woven fabric composites using a multi-scale approach", Int. J. Damage Mech., 27(1), 97-119. https://dx.doi.org/10.1177/1056789516663613.
  37. Zhang, Y.C. and Harding, J. (1990), "A numerical micromechanics analysis of the mechanical properties of a plain weave composite", Comput. Struct., 36(5), 839-844. https://doi.org/10.1016/0045-7949(90)90154-T.
  38. Zhou, Y., Lu, Z. and Yang, Z. (2013), "Progressive damage analysis and strength prediction of 2D plain weave composites", Compos. Part B Eng., 47, 220-229. https://dx.doi.org/10.1016/j.compositesb.2012.10.026.