DOI QR코드

DOI QR Code

Non-destructive evaluation of steel and GFRP reinforced beams using AE and DIC techniques

  • Sharma, Gaurav (Civil Engineering Department, Thapar Institute of Engineering and Technology) ;
  • Sharma, Shruti (Civil Engineering Department, Thapar Institute of Engineering and Technology) ;
  • Sharma, Sandeep K. (Mechanical Engineering Department, Thapar Institute of Engineering and Technology)
  • Received : 2020.01.31
  • Accepted : 2021.01.04
  • Published : 2021.03.10

Abstract

The paper presents an investigation of the widely varying mechanical performance and behaviour of steel and Glass Fibre Reinforced Polymer (GFRP) reinforced concrete beams using non-destructive techniques of Acoustic Emission (AE) and Digital Image Correlation (DIC) under four-point bending. Laboratory experiments are performed on both differently reinforced concrete beams with 0.33%, 0.52% and 1.11% of tension reinforcement against balanced section. The results show that the ultimate load-carrying capacity increases with an increase in tensile reinforcement in both cases. In addition to that, AE waveform parameters of amplitude and number of AE hits successfully correlates and picks up the divergent mechanism of cracking initiation and progression of failure in steel reinforced and GFRP reinforced concrete beams. AE activity is about 20-30% more in GFRP-RC beams as compared to steel-RC beams. It was primarily due to the lower modulus of elasticity of GFRP bars leading to much larger ductility and deflections as compared to steel-RC beams. Furthermore, AE XY event plots and longitudinal strain profiles using DIC gives an online and real-time visual display of progressive AE activity and strains respectively to efficaciously depict the crack evolution and their advancement in steel-RC and GFRP-RC beams which show a close matching with the micro-and macro-cracks visually observed in the actual beams at various stages of loading.

Keywords

References

  1. Abouhussien, A.A. and Hassan, A.A. (2015), "Evaluation of damage progression in concrete structures due to reinforcing steel corrosion using acoustic emission monitoring", J. Civil Struct. Hlth. Monit., 5(5), 751-765. https://doi.org/10.1007/s13349-015-0144-5.
  2. ACI 318 (2008), Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute, Farmington Hills, MI, USA.
  3. ACI 440.1R-06 (2006), Guide for the Design and Construction of Concrete Reinforced with FRP Bar, American Concrete Institute, Farmington Hills, MI, USA.
  4. Aggelis, D.G., Verbruggen, S., Tsangouri, E., Tysmans, T. and Van-Hemelrijck, D. (2013), "Characterization of mechanical performance of concrete beams with external reinforcement by acoustic emission and digital image correlation", Constr. Build. Mater., 47(1), 1037-1045. https://doi.org/10.1016/j.conbuildmat.2013.06.005.
  5. Aldahdooh, M.A.A., Bunnori, N.M. and Johari, M.M. (2013), "Damage evaluation of reinforced concrete beams with varying thickness using the acoustic emission technique", Constr. Build. Mater., 44(1), 812-821. https://doi.org/10.1016/j.conbuildmat.2012.11.099.
  6. Ascione, L., Mancusi, G. and Spadea, S. (2010), "Flexural behavior of concrete beams reinforced with GFRP bars", Strain, 46(5), 460-469. https://doi.org/10.1111/j.1475-1305.2009.00662.x.
  7. ASTM D7205 (2006), Standard Test Method for Tensile Properties of Fiber Reinforced Polymer Matrix Composite Bars, ASTM International, West Conshohocken, Pennsylvania, USA.
  8. Badawi, M. and Soudki, K. (2005), "Control of corrosion-induced damage in reinforced concrete beams using carbon fiberreinforced polymer laminates", J. Compos. Constr., 9(2), 195-201. https://doi.org/10.1061/(asce)1090-0268(2005)9:2(195).
  9. Blaber, J., Adair, B. and Antoniou, A. (2014), "Ncorr open-source 2D digital image correlation Matlab software", Exp. Mech., 55(6), 1105-1122. https://doi.org/10.1007/s11340-015-0009-1.
  10. Bowness, D., Lock, A.C., Richards, D.J. and Powrie, W. (2005), "Innovative remote video monitoring of railway track displacements, In Applied Mechanics and Materials", Tran. Tech. Publ., 3(1), 417-422. https://doi.org/10.4028/www.scientific.net/AMM.3-4.417.
  11. Brachman, R.W.I., McLeod, H.A., Moore, I.D. and Take, W.A. (2010), "Three-dimensional ground displacements from static pipe bursting in stiff clay", Can. Geotech. J., 47(4), 439-450. https://doi.org/10.1139/T09-118.
  12. Bruck, H.A., McNeill, S.R., Sutton, M.A. and Peters, W.H. (1989), "Digital image correlation using Newton-Raphson method of partial differential correction", Exp. Mech., 29(3), 261-267. https://doi.org/10.1007/BF02321405.
  13. De Sutter, S., Verbruggen, S., Tysmans, T. and Aggelis, D.G. (2017), "Fracture monitoring of light weight composite concrete beams", Compos. Struct., 167, 11-19. https://doi.org/10.1016/j.compstruct.2017.01.024.
  14. Dunn, S.E., Young, J.D., Hartt, W.H. and Brown, R.P. (1984), "Acoustic emission characterization of corrosion-induced damage in reinforced concrete", Corros., 40(7), 339-343. https://doi.org/10.5006/1.3593933.
  15. Dutton, M., Take, W.A. and Hoult, N.A. (2013), "Curvature monitoring of beams using digital image correlation", J. Bridge Eng., 19(3), 05013001. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000538.
  16. El-Hacha, R., Mirmiran, A., Cook, A. and Rizkalla, S. (2010), "Effectiveness of surface-applied corrosion inhibitors for concrete bridges", J. Mater. Civil Eng., 23(3), 271-280. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000163.
  17. Fowler, D.W. (1999), "Polymers in concrete: a vision for the 21st century", Cement Concrete Compos., 2(5-6), 449-452. https://doi.org/10.1016/S0958-9465(99)00032-3.
  18. Gholizadeh, S., Leman, Z. and Baharudin, B.T.H.T. (2015), "A review of the application of acoustic emission technique in engineering", Struct. Eng. Mech., 54(6), 1075-1095. https://doi.org/10.12989/sem.2015.54.6.1075.
  19. Giannaros, P., Kanellopoulos, A. and Al-Tabbaa, A. (2016), "Sealing of cracks in cement using microencapsulated sodium silicate", Smart Mater. Struct., 25(8), 084005. https://doi.org/10.1088/0964-1726/25/8/084005.
  20. Goldston, M., Remennikov, A. and Sheikh, M.N. (2016), "Experimental investigation of the behaviour of concrete beams reinforced with GFRP bars under static and impact loading", Eng. Struct., 113, 220-232. https://doi.org/10.1016/j.engstruct.2016.01.044.
  21. Goldston, M.V., Remennikov, A. and Sheikh, M.N. (2017), "Flexural behavior of GFRP reinforced high strength and ultrahigh strength concrete beams", Constr. Build. Mater., 131, 606-617. http://dx.doi.org/10.1016/j.conbuildmat.2016.11.094.
  22. Gu, L. and Meng, X.H. (2016), "Review on research and application of stainless steel-reinforced concrete", Proceedings of the International Conference on Mechatronics, Manufacturing and Materials Engineering. Shenyang, China, July. https://doi.org/10.1051/matecconf/20166303003.
  23. Gudonis, E., Timinskas, E., Gribniak, V., Kaklauskas, G., Arnautov A.K. and Tamulenas,V. (2013), "FRP reinforcement for concrete structures: A state-of-the-art review of application and design", Eng. Struct. Technol., 5(4), 147-158. https://doi.org/10.3846/2029882X.2014.889274.
  24. Hensher, D. (1993), Fibre-Reinforced-Plastic (FRP) Reinforcement for Concrete Structures, 1 st Edition, Elsevier Science, Amsterdam, Netherlands. https://doi.org/10.1016/C2009-0-09136-3.
  25. Hosseini, S.A., Shabakhty, N. and Mahini, S.S. (2015), "Correlation between chloride-induced corrosion initiation and time to cover cracking in RC Structures", Struct. Eng. Mech., 56(2), 257-273. https://doi.org/10.12989/sem.2015.56.2.257.
  26. Hoult, N.A., Dutton, M., Hoag, A. and Take, W.A. (2016), "Measuring crack movement in reinforced concrete using digital image correlation: Overview and application to shear slip measurements", Proc. IEEE, 104(8), 1561-1574. https://doi.org/10.1109/JPROC.2016.2535157.
  27. IS 10262 (2009), Indian Standard Code for Concrete Mix Proportioning Guidelines (First Revision), Bureau of Indian Standards, New Delhi, India.
  28. IS 1708 (2008), High Strength Deformed Steel Bars and Wires for Concrete Reinforcement-Specification, Bureau of Indian Standards, New Delhi, India.
  29. Krasniqi, C., Kabashi, N., Krasniqi, E. and Kaqi, V. (2018), "Comparison of the behavior of GFRP reinforced concrete beams with conventional steel bars", Pollack Periodica, 13(3), 141-150. https://doi.org/10.1556/606.2018.13.3.14.
  30. Kumar, A., Vishnuvardhan, S., Murthy, A.R. and Raghava, G. (2019), "Tensile and fracture characterization using a simplified digital image correlation test set-up", Struct. Eng. Mech., 69(4), 467-477. https://doi.org/10.12989/sem.2019.69.4.467.
  31. Kuntz., M. Jolin, M., Bastien, J., Perez, F. and Hild, F. (2006), "Digital image correlation analysis of crack behavior in a reinforced concrete beam during a load test", Can. J. Civil Eng., 33(11), 1418-1425. https://doi.org/10.1139/l06-106.
  32. Manning, D.G. (1998), "Corrosion performance of epoxy-coated reinforcing steel: North American experience", Constr. Build. Mater., 10(5), 349-365. https://doi.org/10.1016/0950-0618(95)00028-3.
  33. Nayak, A.N., Kumari, A. and Swain, R.B. (2018), "Strengthening of RC beams using externally bonded fibre reinforced polymer composites", Struct., 14(6), 137-152. https://doi.org/10.1016/j.istruc.2018.03.004.
  34. Ohno, K. and Ohtsu, M. (2010), "Crack classification in concrete based on acoustic emission", Constr. Build. Mater., 24(12), 2339-2346. https://doi.org/10.1016/j.conbuildmat.2010.05.004.
  35. Ohtsu, M. and Tomoda, Y. (2007), "Corrosion process in reinforced concrete identified by acoustic emission", Mater. Tran., 48(6), 1184-1189. https://doi.org/10.2320/matertrans.IMRA2007844.
  36. Ohtsu, M. and Uddin, F.A. (2008), "Mechanisms of corrosioninduced cracks in concrete at meso-and macro-scales", J. Adv. Concrete Technol., 6(3), 419-429. https://doi.org/10.3151/jact.6.419.
  37. Ohtsu, M., Mori, K. and Kawasaki, Y. (2011), "Corrosion process and mechanisms of corrosion‐induced cracks in reinforced concrete identified by AE analysis", Strain, 47, 179-186. https://doi.org/10.1111/j.1475-1305.2010.00754.x.
  38. Perdomo, M.E., Picon, R., Marante, M.E., Hild, F., Roux, S. and Florez-Lopez, J. (2013), "Experimental analysis and mathematical modeling of fracture in RC elements with any aspect ratio", Eng. Struct., 46, 407-416. https://doi.org/10.1016/j.engstruct.2012.07.005.
  39. Prem, P.R. and Murthy, A.R. (2017), "Acoustic emission monitoring of reinforced concrete beams subjected to four-point-bending", Appl. Acoust., 117(1), 28-38. https://doi.org/10.1016/j.apacoust.2016.08.006.
  40. Russ, J.C. (2016), The Image Processing Handbook, 7 th Edition, CRC Press and Taylor & Francis Group, Boca Raton, Florida, USA.
  41. Saikia, B., Kumar, P., Thomas, J., Rao, K.N. and Ramaswamy, A. (2007), "Strength and serviceability performance of beams reinforced with GFRP bars in flexure", Constr. Build. Mater., 21(8), 1709-1719. https://doi.org/10.1016/j.conbuildmat.2006.05.021.
  42. Saleh, Z., Goldston, M., Remennikov, A.M. and Sheikh, M.N. (2019), "Flexural design of GFRP bar reinforced concrete beams: An appraisal of code recommendations", J. Build. Eng., 25, 100794. https://doi.org/10.1016/j.jobe.2019.100794.
  43. Shah, S.G. and Kishen, J.C. (2011), "fracture properties of concrete-concrete interfaces using digital image correlation", Exp. Mech., 51(3), 303-313. http://dx.doi.org/10.1590/S1679-78252014000200011.
  44. Sharma, A., Sharma, S. Sharma, S. and Mukherjee, A. (2015), "Ultrasonic guided waves for monitoring corrosion of FRP wrapped concrete structures", Constr. Build. Mater., 96(10), 690-702. https://doi.org/10.1016/j.conbuildmat.2015.08.08.
  45. Sharma, A., Sharma, S., Sharma, S. and Mukherjee, A. (2018), "Investigation of deterioration in corroding reinforced concrete beams using active and passive techniques", Constr. Build. Mater., 161(1), 555-569. https://doi.org/10.1016/j.conbuildmat.2017.11.165.
  46. Sharma, A., Sharma, S., Sharma, S. and Mukherjee, A. (2018), "Monitoring invisible corrosion in concrete using a combination of wave propagation techniques", Cement Concrete Compos., 90(1), 89-99. https://doi.org/10.1016/j.cemconcomp.2018.03.014.
  47. Sonnenschein, R., Gajdosova, K. and Holly, I. (2016), "FRP composites and their using in the construction of bridges", Procedia Eng., 161(1), 477-482. https://doi.org/10.1016/j.proeng.2016.08.665.
  48. Stankiewicz, A., Szczygiel, I. and Szczygiel, B. (2013), "Selfhealing coatings in anti-corrosion applications", J. Mater. Sci., 48(23), 8041-8051. https://doi.org/10.1007/s10853-013-7616-y.
  49. Verbruggen, S., Aggelis, D.G., Tysmans, T. and Wastiels, J. (2014), "Bending of beams externally reinforced with TRC and CFRP monitored by DIC and AE", Compos. Struct., 112, 113-121. https://doi.org/10.1016/j.compstruct.2014.02.006.
  50. Yoneyama, S. and Ueda, H. (2012), "Bridge deflection measurement using digital image correlation with camera movement correction", Mater. Tran., 53(2), 285-290. https://doi.org/10.2320/matertrans.I-M2011843.