References
- Achouri, F., Benyoucef, S., Bourada, F., Bouiadjra, R.B. and Tounsi, A. (2019), "Robust quasi 3D computational model for mechanical response of FG thick sandwich plate", Struct. Eng. Mech., 70(5), 571-589. https://doi.org/10.12989/SEM.2019.70.5.571.
- Addou, F.Y., Meradjah, M., Bousahla, A.A., Benachour, A., Bourada, F., Tounsi, A. and Mahmoud, S.R. (2019), "Influences of porosity on dynamic response of FG plates resting on Winkler/Pasternak/Kerr foundation using quasi 3D HSDT", Comput. Concrete, 24(4), 347-367. https://doi.org/10.12989/CAC.2019.24.4.347.
- AlSaid-Alwan, H.H.S. and Avcar, M. (2020), "Analytical solution of free vibration of FG beam utilizing different types of beam theories: A comparative study", Comput. Concrete, 26(3), 285-292. https://doi.org/10.12989/CAC.2020.26.3.285.
- Alshorbagy, AE., Eltaher, M.A. and Mahmoud, F.F. (2011), "Free vibration characteristics of a functionally graded beam by finite element method", Appl. Math. Model., 35(1), 412-425. https://doi.org/10.1016/j.apm.2010.07.006.
- Anandrao, K.S., Gupta, R., Ramachandran, P. and Rao, G.V. (2012), "Free vibration analysis of functionally graded beams", Defence, Sci. J., 62(3), 139-146. https://doi.org/10.14429/dsj.62.1326.
- Asgari, M. and Akhlaghi, M. (2011), "Natural frequency analysis of 2D-FGM thick hollow cylinder based on three-dimensional elasticity equations", Eur. J. Mech. A Solid., 30, 72-81. https://doi.org/10.1016/j.euromechsol.2010.10.002.
- Atmane, HA., Tounsi, A., Meftah, SA. and Belhadj, HA. (2011), "Free vibration behavior of exponential functionally graded beams with varying cross-section", J. Vib. Control, 17(2), 311-318. https://doi.org/10.1177/1077546310370691.
- Aydin, K. (2013), "Free vibration of functionally graded beams with arbitrary number of surface cracks", Eur. J. Mech. A-Solid., 42, 112-124. https://doi.org/10.1016/j.euromechsol.2013.05.002.
- Balubaid, M., Tounsi, A., Dakhel, B. and Mahmoud, S.R. (2019), "Free vibration investigation of FG nanoscale plate using nonlocal two variables integral refined plate theory", Comput. Concrete, 24(6), 579-586. https://doi.org/10.12989/CAC.2019.24.6.579.
- Benahmed, A., Fahsi, B., Benzair, A., Zidour, M., Bourada, F. and Tounsi, A. (2019), "Critical buckling of functionally graded nanoscale beam with porosities using nonlocal higher-order shear deformation", Struct. Eng. Mech., 69(4), 457-466. https://doi.org/10.12989/SEM.2019.69.4.457.
- Boukhlif, Z., Bouremana, M., Bourada, F., Bousahla, A.A., Bourada, M., Tounsi, A. and Al-Osta, M.A. (2019), "A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation", Steel Compos. Struct., 31(5), 503-516. https://doi.org/10.12989/SCS.2019.31.5.503.
- Casimir, J.B. (1997), "Elements continus de type poutre (Etude statique et dynamique d'assemblages de poutres planesou gauches) ", Thesis in French, CNAM.
- Casimir, J.B., Duforet, C. and Vinh, T. (2003), "Dynamic behavior of structures in large frequency range by continuous element methods", J. Sound Vib., 267, 1085-1106. https://doi.org/10.1016/S0022-460X(02)01533-X.
- Chaabane, L.A., Bourada, F., Sekkal, M., Zerouati, S., Zaoui, F.Z., Tounsi, A., Derras, A., Bousahla, A.A. and Tounsi, A. (2019), "Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation", Struct. Eng. Mech., 71(2), 185-196. https://doi.org/10.12989/SEM.2019.71.2.185.
- Eroglu, U. (2015), "In-plane free vibrations of circular beams made of functionally graded material in thermal environment: Beam theory approach", Compos. Struct., 122, 217-228. https://doi.org/10.1016/j.compstruct.2014.11.051.
- Giunta, G., Crisafulli, D., Belouettar, S. and Carrera, E. (2011), "Hierarchical theories for the free vibration analysis of functionally graded beams", Compos. Struct., 94(1), 68-74. https://doi.org/10.1016/j.compstruct.2011.07.016.
- Goupee A.J. and Vel, S.S. (2006), "Optimization of natural frequencies of bidirectional functionally graded beams", Struct. Multidisc. Optim., 32, 473-484. https://doi.org/10.1007/s00158-006-0022-1.
- Haciyev, V.C., Sofiyev, A.H. and Kuruoglu, V.T. (2018), "Free bending vibration analysis of thin bi-directionally exponentially graded orthotropic rectangular plates resting on two-parameter elastic foundations", Compos. Struct., 184, 372-377. https://doi.org/10.1016/j.compstruct.2017.10.014.
- Harris, C.M. and Crede, C.E. (1976), Shock and Vibration Handbook, McGraw-Hill, New York.
- Huang, Y. and Li, X.F. (2010), "A new approach for free vibration of axially functionally graded beams with non-uniform crosssection", J. Sound Vib., 329(11), 2291-2303. https://doi.org/10.1016/j.jsv.2009.12.029.
- Hussain, M. and Selmi, A. (2020a), "Analytical vibration of FG cylindrical shell with ring support based on various configurations", Adv. Concrete Constr., 9(6), 557-568. http://dx.doi.org/10.12989/acc.2020.9.6.557.
- Hussain, M. and Selmi, A. (2020b), "Effect of Pasternak foundation: Structural modal identification for vibration of FG shell", Adv. Concrete Constr., 9(6), 569-576. http://dx.doi.org/10.12989/acc.2020.9.6.569.
- Karamanli, A. (2018), "Free vibration analysis of two directional functionally graded beams using a third order shear deformation theory", Compos. Struct., 189, 127-136. https://doi.org/10.1016/j.compstruct.2018.01.060.
- Kukla, S. and Rychlewska, J. (2013), "Free vibration analysis of functionally graded beams", J. Appl. Math. Comput. Mech., 12(2), 39-44. https://doi.org/10.17512/jamcm.2013.2.05.
- Kulla, P.H. (1991), "The continuous elements method", ESA International Conference on Spacecraft Structures and Mechanical Testing, ESTEC, Noodwijk, Netherlands.
- Li, S., Wan, Z. and Zhang, J. (2014), "Free vibration of functionally graded beams based on both classical and firstorder shear deformation beam theories", Appl. Math. Mech. English Ed., 35, 591-606. https://doi.org/10.1007/s10483-014-1815-6.
- Li, X.F., Kang, Y.A. and Wu, J.X. (2013), "Exact frequency equations of free vibration of exponentially functionally graded beams", Appl. Acoust., 74(3), 413-420. https://doi.org/10.1016/j.apacoust.2012.08.003.
- Mahi, A., Bedia, EAA., Tounsi, A. and Mechab, I. (2010), "An analytical method for temperature dependent free vibration analysis of functionally graded beams with general boundary conditions", Compos. Struct., 92(8), 1877-1887. https://doi.org/10.1016/j.compstruct.2010.01.010.
- Mahmoudi, A., Benyoucef, S., Tounsi, A., Benachour, A., Bedia, A.A. and Mahmoud, S.R. (2019), "A refined quasi-3D shear deformation theory for thermo-mechanical behavior of functionally graded sandwich plates on elastic foundations", J. Sandw. Struct. Mater., 21(6), 1906-1929. https://doi.org/10.1177/1099636217727577.
- Mekerbi, M., Benyoucef, S., Mahmoudi, A., Bourada, F. and Tounsi, A. (2019), "Investigation on thermal buckling of porous FG plate resting on elastic foundation via quasi 3D solution", Struct. Eng. Mech., 72(4), 513-524. https://doi.org/10.12989/SEM.2019.72.4.513.
- Nemat-Alla, M. and Noda, N. (2000), "Edge crack problem in a semi-infinite FGM plate with a bi-directional coefficient of thermal expansion under two-dimensional thermal loading", Acta. Mech., 144, 211-229. https://doi.org/10.1007/BF01170176.
- Nguyen, D.K., Nguyen, Q.H., Tran, T.T. and Bui, V.T. (2017), "Vibration of bi-dimensional functionally graded Timoshenko beams excited by a moving load", Acta. Mech., 228, 141-155. https://doi.org/10.1007/s00707-016-1705-3.
- Okamura, H., Shinno, A., Yamanaka, T., Suzuki, A. and Sogabe, K. (1995), "Simple modeling and analysis for crankshaft three-dimensional vibrations, part1: background and application to free vibrations", Trans. ASME, J. Vibr. Acoust., 117(1), 70-79. https://doi.org/10.1115/1.2873869
- Okamura, H., Shinno, A., Yamanaka, T., Suzuki, A. and Sogabe, K.A. (1990), "Dynamic stiffness matrix approach to the analysis of three-dimensional vibrations of automobile engine crankshafts: Part1-background and application to free vibrations", Proceedings of the ASME Winter Meeting on Vehicle Noise, Dallas, Texas, USA.
- Pandey, S. and Pradyumna, S. (2015), "Free vibration of functionally graded sandwich plates in thermal environment using a layer wise theory", Eur. J. Mech. A Solid., 51, 55-66. https://doi.org/10.1016/j.euromechsol.2014.12.001.
- Qibo, M. (2011), "Free vibration analysis of multiple-stepped beams by using Adomian decomposition method", Math Comput. Model., 54(1-2), 756-764. https://doi.org/10.1016/j.mcm.2011.03.019.
- Rahmani, M.C., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Bedia, E.A.A., Mahmoud, S.R. Benrahou, K.H. and Tounsi, A. (2020), "Influence of boundary conditions on the bending and free vibration behavior of FGM sandwich plates using a fourunknown refined integral plate theory", Comput. Concrete, 25(3), 225-244. https://doi.org/10.12989/CAC.2020. 25.3.225.
- Shahba, A. and Rajasekaran, S. (2012), "Free vibration and stability of tapered Euler-Bernoulli beams made of axially functionally graded materials", Appl. Math. Model., 36(7), 3094-3111. https://doi.org/10.1016/j.apm.2011.09.073.
- Sharma, P., Singh, R. and Hussain, M. (2019), "On modal analysis of axially functionally gradedmaterial beam under hygrothermal effect", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 234(5), 1085-1101. https://doi.org/10.1177/0954406219888234.
- Simsek, M. (2015), "Bi-directional functionally graded materials (BDFGMs) for free and forced vibration of Timoshenko beams with various boundary conditions", Compos. Struct., 141, 968-978. https://doi.org/10.1016/j.compstruct.2015.08.021.
- Simsek, M., Kocatürk, T. and Akbas, S. (2012), "Dynamic behavior of an axially functionally graded beam under action of a moving harmonic load", Compos. Struct., 94, 2358-2364. https://doi.org/10.1016/j.compstruct.2012.03.020.
- Sina, S., Navazi, H. and Haddadpour, H. (2009), "An analytical method for free vibration analysis of functionally graded beams", Mater. Des., 30(3), 741-747. https://doi.org/10.1016/j.matdes.2008.05.015.
- Tlidji, Y., Zidour, M., Draiche, K., Safa, A., Bourada, M., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2019), "Vibration analysis of different material distributions of functionally graded microbeam", Struct. Eng. Mech., 69(6), 637-649. https://doi.org/10.12989/SEM.2019.69.6.637.
- Tong, X., Tabarrok, B. and Yeh, K. (1995), "Vibration analysis of Timoshenko beams with nonhomogeneity and varying cross-section", J. Sound Vib., 5(186), 821-835. https://doi.org/10.1006/jsvi.1995.0490.
- Wang, Z., Wang, X., Xu, G., Cheng, S. and Zeng, T. (2016), "Free vibration of two-directional functionally graded beams", Compos. Struct., 135, 191-198. https://doi.org/10.1016/j.compstruct.2015.09.013.
- Wei, D., Liu, Y. and Xiang, Z. (2012), "An analytical method for free vibration analysis of functionally graded beams with edge cracks", J. Sound Vib., 331(7), 1686-1700. https://doi.org/10.1016/j.jsv.2011.11.020.
- Yang, Y., Lam, C.C., Kou, K.P. and Iu, V.P. (2014), "Free vibration analysis of the functionally graded sandwich beams by a mesh free boundary-domain integral equation method", Compos. Struct., 117, 32-39. https://doi.org/10.1016/j.compstruct.2014.06.016.
- Zarga, D., Tounsi, A., Bousahla, A.A., Bourada, F. and Mahmoud, S.R. (2019), "Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory", Struct. Eng. Mech., 32(3), 389-410. https://doi.org/10.12989/SCS.2019.32.3.389.
- Zhao, L., Chen, W.Q. and Lü, C.F. (2012), "Symplectic elasticity for two-directional functionally graded materials", Mech. Mater., 54, 32-42. https://doi.org/10.1016/j.mechmat. 2012.06.001.