DOI QR코드

DOI QR Code

Vibration behavior of bi-dimensional functionally graded beams

  • Selmi, Abdellatif (Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam Bin Abdulaziz University)
  • Received : 2020.04.15
  • Accepted : 2020.12.08
  • Published : 2021.03.10

Abstract

Based on Euler-Bernoulli beam theory and continuous element method, the free vibration of bi-dimensional functionally graded beams is investigated. It is assumed that the material properties vary exponentially along the beam thickness and length. The characteristic frequency equations of beams with different boundary conditions are obtained by transfer matrix method. The validity of the proposed method is assessed through comparison with available results. Parametric studies are carried out to analyze the influences of the gradient indexes and the beam slenderness ratio on the natural frequencies of bi-dimensional functionally graded beams.

Keywords

References

  1. Achouri, F., Benyoucef, S., Bourada, F., Bouiadjra, R.B. and Tounsi, A. (2019), "Robust quasi 3D computational model for mechanical response of FG thick sandwich plate", Struct. Eng. Mech., 70(5), 571-589. https://doi.org/10.12989/SEM.2019.70.5.571.
  2. Addou, F.Y., Meradjah, M., Bousahla, A.A., Benachour, A., Bourada, F., Tounsi, A. and Mahmoud, S.R. (2019), "Influences of porosity on dynamic response of FG plates resting on Winkler/Pasternak/Kerr foundation using quasi 3D HSDT", Comput. Concrete, 24(4), 347-367. https://doi.org/10.12989/CAC.2019.24.4.347.
  3. AlSaid-Alwan, H.H.S. and Avcar, M. (2020), "Analytical solution of free vibration of FG beam utilizing different types of beam theories: A comparative study", Comput. Concrete, 26(3), 285-292. https://doi.org/10.12989/CAC.2020.26.3.285.
  4. Alshorbagy, AE., Eltaher, M.A. and Mahmoud, F.F. (2011), "Free vibration characteristics of a functionally graded beam by finite element method", Appl. Math. Model., 35(1), 412-425. https://doi.org/10.1016/j.apm.2010.07.006.
  5. Anandrao, K.S., Gupta, R., Ramachandran, P. and Rao, G.V. (2012), "Free vibration analysis of functionally graded beams", Defence, Sci. J., 62(3), 139-146. https://doi.org/10.14429/dsj.62.1326.
  6. Asgari, M. and Akhlaghi, M. (2011), "Natural frequency analysis of 2D-FGM thick hollow cylinder based on three-dimensional elasticity equations", Eur. J. Mech. A Solid., 30, 72-81. https://doi.org/10.1016/j.euromechsol.2010.10.002.
  7. Atmane, HA., Tounsi, A., Meftah, SA. and Belhadj, HA. (2011), "Free vibration behavior of exponential functionally graded beams with varying cross-section", J. Vib. Control, 17(2), 311-318. https://doi.org/10.1177/1077546310370691.
  8. Aydin, K. (2013), "Free vibration of functionally graded beams with arbitrary number of surface cracks", Eur. J. Mech. A-Solid., 42, 112-124. https://doi.org/10.1016/j.euromechsol.2013.05.002.
  9. Balubaid, M., Tounsi, A., Dakhel, B. and Mahmoud, S.R. (2019), "Free vibration investigation of FG nanoscale plate using nonlocal two variables integral refined plate theory", Comput. Concrete, 24(6), 579-586. https://doi.org/10.12989/CAC.2019.24.6.579.
  10. Benahmed, A., Fahsi, B., Benzair, A., Zidour, M., Bourada, F. and Tounsi, A. (2019), "Critical buckling of functionally graded nanoscale beam with porosities using nonlocal higher-order shear deformation", Struct. Eng. Mech., 69(4), 457-466. https://doi.org/10.12989/SEM.2019.69.4.457.
  11. Boukhlif, Z., Bouremana, M., Bourada, F., Bousahla, A.A., Bourada, M., Tounsi, A. and Al-Osta, M.A. (2019), "A simple quasi-3D HSDT for the dynamics analysis of FG thick plate on elastic foundation", Steel Compos. Struct., 31(5), 503-516. https://doi.org/10.12989/SCS.2019.31.5.503.
  12. Casimir, J.B. (1997), "Elements continus de type poutre (Etude statique et dynamique d'assemblages de poutres planesou gauches) ", Thesis in French, CNAM.
  13. Casimir, J.B., Duforet, C. and Vinh, T. (2003), "Dynamic behavior of structures in large frequency range by continuous element methods", J. Sound Vib., 267, 1085-1106. https://doi.org/10.1016/S0022-460X(02)01533-X.
  14. Chaabane, L.A., Bourada, F., Sekkal, M., Zerouati, S., Zaoui, F.Z., Tounsi, A., Derras, A., Bousahla, A.A. and Tounsi, A. (2019), "Analytical study of bending and free vibration responses of functionally graded beams resting on elastic foundation", Struct. Eng. Mech., 71(2), 185-196. https://doi.org/10.12989/SEM.2019.71.2.185.
  15. Eroglu, U. (2015), "In-plane free vibrations of circular beams made of functionally graded material in thermal environment: Beam theory approach", Compos. Struct., 122, 217-228. https://doi.org/10.1016/j.compstruct.2014.11.051.
  16. Giunta, G., Crisafulli, D., Belouettar, S. and Carrera, E. (2011), "Hierarchical theories for the free vibration analysis of functionally graded beams", Compos. Struct., 94(1), 68-74. https://doi.org/10.1016/j.compstruct.2011.07.016.
  17. Goupee A.J. and Vel, S.S. (2006), "Optimization of natural frequencies of bidirectional functionally graded beams", Struct. Multidisc. Optim., 32, 473-484. https://doi.org/10.1007/s00158-006-0022-1.
  18. Haciyev, V.C., Sofiyev, A.H. and Kuruoglu, V.T. (2018), "Free bending vibration analysis of thin bi-directionally exponentially graded orthotropic rectangular plates resting on two-parameter elastic foundations", Compos. Struct., 184, 372-377. https://doi.org/10.1016/j.compstruct.2017.10.014.
  19. Harris, C.M. and Crede, C.E. (1976), Shock and Vibration Handbook, McGraw-Hill, New York.
  20. Huang, Y. and Li, X.F. (2010), "A new approach for free vibration of axially functionally graded beams with non-uniform crosssection", J. Sound Vib., 329(11), 2291-2303. https://doi.org/10.1016/j.jsv.2009.12.029.
  21. Hussain, M. and Selmi, A. (2020a), "Analytical vibration of FG cylindrical shell with ring support based on various configurations", Adv. Concrete Constr., 9(6), 557-568. http://dx.doi.org/10.12989/acc.2020.9.6.557.
  22. Hussain, M. and Selmi, A. (2020b), "Effect of Pasternak foundation: Structural modal identification for vibration of FG shell", Adv. Concrete Constr., 9(6), 569-576. http://dx.doi.org/10.12989/acc.2020.9.6.569.
  23. Karamanli, A. (2018), "Free vibration analysis of two directional functionally graded beams using a third order shear deformation theory", Compos. Struct., 189, 127-136. https://doi.org/10.1016/j.compstruct.2018.01.060.
  24. Kukla, S. and Rychlewska, J. (2013), "Free vibration analysis of functionally graded beams", J. Appl. Math. Comput. Mech., 12(2), 39-44. https://doi.org/10.17512/jamcm.2013.2.05.
  25. Kulla, P.H. (1991), "The continuous elements method", ESA International Conference on Spacecraft Structures and Mechanical Testing, ESTEC, Noodwijk, Netherlands.
  26. Li, S., Wan, Z. and Zhang, J. (2014), "Free vibration of functionally graded beams based on both classical and firstorder shear deformation beam theories", Appl. Math. Mech. English Ed., 35, 591-606. https://doi.org/10.1007/s10483-014-1815-6.
  27. Li, X.F., Kang, Y.A. and Wu, J.X. (2013), "Exact frequency equations of free vibration of exponentially functionally graded beams", Appl. Acoust., 74(3), 413-420. https://doi.org/10.1016/j.apacoust.2012.08.003.
  28. Mahi, A., Bedia, EAA., Tounsi, A. and Mechab, I. (2010), "An analytical method for temperature dependent free vibration analysis of functionally graded beams with general boundary conditions", Compos. Struct., 92(8), 1877-1887. https://doi.org/10.1016/j.compstruct.2010.01.010.
  29. Mahmoudi, A., Benyoucef, S., Tounsi, A., Benachour, A., Bedia, A.A. and Mahmoud, S.R. (2019), "A refined quasi-3D shear deformation theory for thermo-mechanical behavior of functionally graded sandwich plates on elastic foundations", J. Sandw. Struct. Mater., 21(6), 1906-1929. https://doi.org/10.1177/1099636217727577.
  30. Mekerbi, M., Benyoucef, S., Mahmoudi, A., Bourada, F. and Tounsi, A. (2019), "Investigation on thermal buckling of porous FG plate resting on elastic foundation via quasi 3D solution", Struct. Eng. Mech., 72(4), 513-524. https://doi.org/10.12989/SEM.2019.72.4.513.
  31. Nemat-Alla, M. and Noda, N. (2000), "Edge crack problem in a semi-infinite FGM plate with a bi-directional coefficient of thermal expansion under two-dimensional thermal loading", Acta. Mech., 144, 211-229. https://doi.org/10.1007/BF01170176.
  32. Nguyen, D.K., Nguyen, Q.H., Tran, T.T. and Bui, V.T. (2017), "Vibration of bi-dimensional functionally graded Timoshenko beams excited by a moving load", Acta. Mech., 228, 141-155. https://doi.org/10.1007/s00707-016-1705-3.
  33. Okamura, H., Shinno, A., Yamanaka, T., Suzuki, A. and Sogabe, K. (1995), "Simple modeling and analysis for crankshaft three-dimensional vibrations, part1: background and application to free vibrations", Trans. ASME, J. Vibr. Acoust., 117(1), 70-79. https://doi.org/10.1115/1.2873869
  34. Okamura, H., Shinno, A., Yamanaka, T., Suzuki, A. and Sogabe, K.A. (1990), "Dynamic stiffness matrix approach to the analysis of three-dimensional vibrations of automobile engine crankshafts: Part1-background and application to free vibrations", Proceedings of the ASME Winter Meeting on Vehicle Noise, Dallas, Texas, USA.
  35. Pandey, S. and Pradyumna, S. (2015), "Free vibration of functionally graded sandwich plates in thermal environment using a layer wise theory", Eur. J. Mech. A Solid., 51, 55-66. https://doi.org/10.1016/j.euromechsol.2014.12.001.
  36. Qibo, M. (2011), "Free vibration analysis of multiple-stepped beams by using Adomian decomposition method", Math Comput. Model., 54(1-2), 756-764. https://doi.org/10.1016/j.mcm.2011.03.019.
  37. Rahmani, M.C., Kaci, A., Bousahla, A.A., Bourada, F., Tounsi, A., Bedia, E.A.A., Mahmoud, S.R. Benrahou, K.H. and Tounsi, A. (2020), "Influence of boundary conditions on the bending and free vibration behavior of FGM sandwich plates using a fourunknown refined integral plate theory", Comput. Concrete, 25(3), 225-244. https://doi.org/10.12989/CAC.2020. 25.3.225.
  38. Shahba, A. and Rajasekaran, S. (2012), "Free vibration and stability of tapered Euler-Bernoulli beams made of axially functionally graded materials", Appl. Math. Model., 36(7), 3094-3111. https://doi.org/10.1016/j.apm.2011.09.073.
  39. Sharma, P., Singh, R. and Hussain, M. (2019), "On modal analysis of axially functionally gradedmaterial beam under hygrothermal effect", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 234(5), 1085-1101. https://doi.org/10.1177/0954406219888234.
  40. Simsek, M. (2015), "Bi-directional functionally graded materials (BDFGMs) for free and forced vibration of Timoshenko beams with various boundary conditions", Compos. Struct., 141, 968-978. https://doi.org/10.1016/j.compstruct.2015.08.021.
  41. Simsek, M., Kocatürk, T. and Akbas, S. (2012), "Dynamic behavior of an axially functionally graded beam under action of a moving harmonic load", Compos. Struct., 94, 2358-2364. https://doi.org/10.1016/j.compstruct.2012.03.020.
  42. Sina, S., Navazi, H. and Haddadpour, H. (2009), "An analytical method for free vibration analysis of functionally graded beams", Mater. Des., 30(3), 741-747. https://doi.org/10.1016/j.matdes.2008.05.015.
  43. Tlidji, Y., Zidour, M., Draiche, K., Safa, A., Bourada, M., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2019), "Vibration analysis of different material distributions of functionally graded microbeam", Struct. Eng. Mech., 69(6), 637-649. https://doi.org/10.12989/SEM.2019.69.6.637.
  44. Tong, X., Tabarrok, B. and Yeh, K. (1995), "Vibration analysis of Timoshenko beams with nonhomogeneity and varying cross-section", J. Sound Vib., 5(186), 821-835. https://doi.org/10.1006/jsvi.1995.0490.
  45. Wang, Z., Wang, X., Xu, G., Cheng, S. and Zeng, T. (2016), "Free vibration of two-directional functionally graded beams", Compos. Struct., 135, 191-198. https://doi.org/10.1016/j.compstruct.2015.09.013.
  46. Wei, D., Liu, Y. and Xiang, Z. (2012), "An analytical method for free vibration analysis of functionally graded beams with edge cracks", J. Sound Vib., 331(7), 1686-1700. https://doi.org/10.1016/j.jsv.2011.11.020.
  47. Yang, Y., Lam, C.C., Kou, K.P. and Iu, V.P. (2014), "Free vibration analysis of the functionally graded sandwich beams by a mesh free boundary-domain integral equation method", Compos. Struct., 117, 32-39. https://doi.org/10.1016/j.compstruct.2014.06.016.
  48. Zarga, D., Tounsi, A., Bousahla, A.A., Bourada, F. and Mahmoud, S.R. (2019), "Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory", Struct. Eng. Mech., 32(3), 389-410. https://doi.org/10.12989/SCS.2019.32.3.389.
  49. Zhao, L., Chen, W.Q. and Lü, C.F. (2012), "Symplectic elasticity for two-directional functionally graded materials", Mech. Mater., 54, 32-42. https://doi.org/10.1016/j.mechmat. 2012.06.001.